The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A293167 a(n) = Sum_{k = 1..n} d(d(d(k))), where d(k) is the number of divisors of k (A000005). 1
 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 24, 26, 28, 30, 32, 34, 37, 39, 42, 44, 46, 48, 51, 53, 55, 57, 60, 62, 65, 67, 70, 72, 74, 76, 78, 80, 82, 84, 87, 89, 92, 94, 97, 100, 102, 104, 107, 109, 112, 114, 117, 119, 122, 124, 127, 129, 131, 133, 137, 139, 141, 144, 146, 148, 151, 153, 156, 158 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS David A. Corneth, Table of n, a(n) for n = 1..10000 Richard Bellman and Harold N. Shapiro, On a problem in additive number theory, Annals Math., 49 (1948), 333-340. Imre Kátai, On the iteration of the divisor-function, Publ. Math. Debrecen, Vol. 16 (1969), pp. 3-15. FORMULA a(1) = 1; a(n + 1) = a(n) + A036450(n + 1) for n > 0. - David A. Corneth, Oct 17 2017 a(n) = (1 + o(1)) * c * n * log(log(log(n))), where c > 0 is a constant (Kátai, 1969). - Amiram Eldar, Apr 17 2024 MATHEMATICA Accumulate[Table[DivisorSigma[0, DivisorSigma[0, DivisorSigma[0, n]]], {n, 80}]] (* Alonso del Arte, Oct 17 2017 *) PROG (PARI) a(n) = sum(k=1, n, numdiv(numdiv(numdiv(k)))); \\ Michel Marcus, Oct 17 2017 (PARI) first(n) = {my(v = vector(n)); v[1] = 1; for(i=2, n, v[i] = v[i-1] + numdiv(numdiv(numdiv(i)))); v} \\ David A. Corneth, Oct 17 2017 CROSSREFS Part of the sequence A000005, A006218, A010553, A036450, A139130. Sequence in context: A246413 A246411 A158333 * A357377 A062505 A230104 Adjacent sequences: A293164 A293165 A293166 * A293168 A293169 A293170 KEYWORD nonn AUTHOR N. J. A. Sloane, Oct 17 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 16 18:48 EDT 2024. Contains 375977 sequences. (Running on oeis4.)