login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A293167 a(n) = Sum_{k = 1..n} d(d(d(k))), where d(k) is the number of divisors of k (A000005). 1
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 24, 26, 28, 30, 32, 34, 37, 39, 42, 44, 46, 48, 51, 53, 55, 57, 60, 62, 65, 67, 70, 72, 74, 76, 78, 80, 82, 84, 87, 89, 92, 94, 97, 100, 102, 104, 107, 109, 112, 114, 117, 119, 122, 124, 127, 129, 131, 133, 137, 139, 141, 144, 146, 148, 151, 153, 156, 158 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
Richard Bellman and Harold N. Shapiro, On a problem in additive number theory, Annals Math., 49 (1948), 333-340.
Imre Kátai, On the iteration of the divisor-function, Publ. Math. Debrecen, Vol. 16 (1969), pp. 3-15.
FORMULA
a(1) = 1; a(n + 1) = a(n) + A036450(n + 1) for n > 0. - David A. Corneth, Oct 17 2017
a(n) = (1 + o(1)) * c * n * log(log(log(n))), where c > 0 is a constant (Kátai, 1969). - Amiram Eldar, Apr 17 2024
MATHEMATICA
Accumulate[Table[DivisorSigma[0, DivisorSigma[0, DivisorSigma[0, n]]], {n, 80}]] (* Alonso del Arte, Oct 17 2017 *)
PROG
(PARI) a(n) = sum(k=1, n, numdiv(numdiv(numdiv(k)))); \\ Michel Marcus, Oct 17 2017
(PARI) first(n) = {my(v = vector(n)); v[1] = 1; for(i=2, n, v[i] = v[i-1] + numdiv(numdiv(numdiv(i)))); v} \\ David A. Corneth, Oct 17 2017
CROSSREFS
Part of the sequence A000005, A006218, A010553, A036450, A139130.
Sequence in context: A246413 A246411 A158333 * A357377 A062505 A230104
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 17 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 18:48 EDT 2024. Contains 375977 sequences. (Running on oeis4.)