login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293075
Number of matchings in the complete tripartite graph K_{n,n,n}.
3
4, 51, 1126, 37201, 1670136, 96502339, 6900041506, 593717817921, 60163621650316, 7059439676098291, 946047724677141054, 143165355635117094481, 24232437980331557100736, 4550485215254864673978051, 941387925046160753185319866, 213240954445118902597065224449
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Complete Tripartite Graph
Eric Weisstein's World of Mathematics, Independent Edge Set
Eric Weisstein's World of Mathematics, Matching
FORMULA
a(n) = Sum_{i,j,k} binomial(n, i)^2 * binomial(n, j) * binomial(n-i, j) * binomial(n-i, k) * binomial(n-j, k) * i!*j!*k!. - Andrew Howroyd, Oct 02 2017
MATHEMATICA
Table[Sum[Binomial[n, i]^2 Binomial[n, j] Binomial[n - i, j] Binomial[n - i, k] Binomial[n - j, k] i! j! k!, {i, 0, n}, {j, 0, n - i}, {k, 0, Min[n - i, n - j]}], {n, 20}]
Table[Sum[(-1)^(i - n) Binomial[n, i]^2 Binomial[n, j] Binomial[-i + n, j] i! j! HypergeometricU[i - n, 1 + i - j, -1], {i, 0, n}, {j, 0, n - i}], {n, 20}]
PROG
(PARI) a(n) = sum(i=0, n, sum(j=0, n-i, sum(k=0, min(n-i, n-j), binomial(n, i)^2 * binomial(n, j) * binomial(n-i, j) * binomial(n-i, k) * binomial(n-j, k) * i!*j!*k!))); \\ Andrew Howroyd, Oct 02 2017
CROSSREFS
Cf. A002720 (matchings in complete bipartite graph).
Sequence in context: A349653 A235325 A230401 * A377833 A300732 A220282
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Sep 30 2017
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Oct 02 2017
STATUS
approved