login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300732
G.f. A(x) satisfies: [x^n] A( x/A(x)^(2*n) ) = 0 for n>=1.
4
1, 1, 4, 51, 1176, 40160, 1852788, 109746196, 8076254064, 720996043500, 76639917914560, 9553107629947662, 1378566504590365848, 227792196676700222749, 42692948669436573948412, 9000830359064469548726190, 2119119760287990864773870816, 553573708504386843864377357273, 159532387646232647024272055366172, 50459353730921637796726256001307227
OFFSET
0,3
COMMENTS
Conjecture: n divides a(n) for n>=1.
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 51*x^3 + 1176*x^4 + 40160*x^5 + 1852788*x^6 + 109746196*x^7 + 8076254064*x^8 + 720996043500*x^9 + 76639917914560*x^10 + ...
The table of coefficients in A( x/A(x)^(2*n) ) begins:
n=0: [1, 1, 4, 51, 1176, 40160, 1852788, 109746196, 8076254064, ...];
n=1: [1, 1, 2, 30, 764, 27982, 1358312, 83578886, 6332601998, ...];
n=2: [1, 1, 0, 13, 436, 18185, 954672, 61915953, 4870913328, ...];
n=3: [1, 1, -2, 0, 184, 10453, 628566, 44079848, 3649012438, ...];
n=4: [1, 1, -4, -9, 0, 4486, 367876, 29468486, 2629920072, ...];
n=5: [1, 1, -6, -14, -124, 0, 161636, 17550750, 1781417478, ...];
n=6: [1, 1, -8, -15, -196, -3273, 0, 7862059, 1075627896, ...];
n=7: [1, 1, -10, -12, -224, -5585, -125790, 0, 488615262, ...];
n=8: [1, 1, -12, -5, -216, -7172, -223436, -6379976, 0, ...];
n=9: [1, 1, -14, 6, -180, -8254, -299616, -11568794, -407408226, 0, ...]; ...
such that the main diagonal consists of all zeros after the initial terms.
The terms a(n)/n for n>=1 begin:
[1, 2, 17, 294, 8032, 308798, 15678028, 1009531758, 80110671500, ...].
PROG
(PARI) {a(n) = my(A=[1, 1]); for(i=2, n, A=concat(A, 0); A[#A] = -Vec(subst(Ser(A), x, x/Ser(A)^(2*(#A-1))))[#A]); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A230401 A293075 A377833 * A220282 A235326 A210834
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 11 2018
STATUS
approved