login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of matchings in the complete tripartite graph K_{n,n,n}.
3

%I #13 Oct 04 2017 14:12:02

%S 4,51,1126,37201,1670136,96502339,6900041506,593717817921,

%T 60163621650316,7059439676098291,946047724677141054,

%U 143165355635117094481,24232437980331557100736,4550485215254864673978051,941387925046160753185319866,213240954445118902597065224449

%N Number of matchings in the complete tripartite graph K_{n,n,n}.

%H Andrew Howroyd, <a href="/A293075/b293075.txt">Table of n, a(n) for n = 1..100</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CompleteTripartiteGraph.html">Complete Tripartite Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IndependentEdgeSet.html">Independent Edge Set</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Matching.html">Matching</a>

%F a(n) = Sum_{i,j,k} binomial(n, i)^2 * binomial(n, j) * binomial(n-i, j) * binomial(n-i, k) * binomial(n-j, k) * i!*j!*k!. - _Andrew Howroyd_, Oct 02 2017

%t Table[Sum[Binomial[n, i]^2 Binomial[n, j] Binomial[n - i, j] Binomial[n - i, k] Binomial[n - j, k] i! j! k!, {i, 0, n}, {j, 0, n - i}, {k, 0, Min[n - i, n - j]}], {n, 20}]

%t Table[Sum[(-1)^(i - n) Binomial[n, i]^2 Binomial[n, j] Binomial[-i + n, j] i! j! HypergeometricU[i - n, 1 + i - j, -1], {i, 0, n}, {j, 0, n - i}], {n, 20}]

%o (PARI) a(n) = sum(i=0, n, sum(j=0, n-i, sum(k=0, min(n-i, n-j), binomial(n, i)^2 * binomial(n, j) * binomial(n-i, j) * binomial(n-i, k) * binomial(n-j, k) * i!*j!*k!))); \\ _Andrew Howroyd_, Oct 02 2017

%Y Cf. A002720 (matchings in complete bipartite graph).

%K nonn

%O 1,1

%A _Eric W. Weisstein_, Sep 30 2017

%E Terms a(11) and beyond from _Andrew Howroyd_, Oct 02 2017