The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A293050 E.g.f.: exp(x^4/(1 - x)). 3
 1, 0, 0, 0, 24, 120, 720, 5040, 60480, 725760, 9072000, 119750400, 1756339200, 28021593600, 479480601600, 8717829120000, 168254102016000, 3438311804928000, 74160828758016000, 1682757222322176000, 40061786401308672000, 998402161605488640000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..444 FORMULA E.g.f.: Product_{i>3} exp(x^i). From Vaclav Kotesovec, Sep 30 2017: (Start) a(n) = 2*(n-1)*a(n-1) - (n-2)*(n-1)*a(n-2) + 4*(n-3)*(n-2)*(n-1)*a(n-4) - 3*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5). a(n) ~ n^(n-1/4) * exp(-7/2 + 2*sqrt(n) - n) / sqrt(2). (End) MAPLE a:= proc(n) option remember; `if`(n=0, 1, add(       a(n-j)*binomial(n-1, j-1)*j!, j=4..n))     end: seq(a(n), n=0..23);  # Alois P. Heinz, Sep 29 2017 MATHEMATICA a[n_] := a[n] = If[n==0, 1, Sum[a[n-j] Binomial[n-1, j-1] j!, {j, 4, n}]]; a /@ Range[0, 23] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *) PROG (PARI) x='x+O('x^66); Vec(serlaplace(exp(x^4/(1-x)))) CROSSREFS Column k=3 of A293053. E.g.f.: Product_{i>k} exp(x^i): A000262 (k=0), A052845 (k=1), A293049 (k=2), this sequence (k=3). Sequence in context: A050213 A124657 A342856 * A052581 A052605 A195917 Adjacent sequences:  A293047 A293048 A293049 * A293051 A293052 A293053 KEYWORD nonn AUTHOR Seiichi Manyama, Sep 29 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 23 08:56 EDT 2021. Contains 345395 sequences. (Running on oeis4.)