The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A050213 Triangle of number of permutations of {1, 2, ..., n} having exactly k cycles, each of which is of length >=r for r=5. 3
 24, 120, 720, 5040, 40320, 362880, 72576, 3628800, 1330560, 39916800, 20338560, 479001600, 303937920, 6227020800, 4643084160, 87178291200, 73721007360, 1743565824, 1307674368000, 1224694598400, 69742632960, 20922789888000 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 5,1 COMMENTS Generalizes Stirling numbers of the first kind REFERENCES L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 257. LINKS Alois P. Heinz, Rows n = 5..300, flattened Eric Weisstein's World of Mathematics, Permutation Cycle. EXAMPLE Triangle begins: 05:       24; 06:      120; 07:      720; 08:     5040; 09:    40320; 10:   362880,    72576; 11:  3628800,  1330560; 12: 39916800, 20338560; MAPLE b:= proc(n) option remember; expand(`if`(n=0, 1, add(       b(n-i)*x*binomial(n-1, i-1)*(i-1)!, i=5..n)))     end: T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)): seq(T(n), n=5..20);  # Alois P. Heinz, Sep 25 2016 MATHEMATICA b[n_] := b[n] = Expand[If[n == 0, 1, Sum[b[n - i]*x*Binomial[n - 1, i - 1]* (i - 1)!, {i, 5, n}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][ b[n]]; T /@ Range[5, 20] // Flatten (* Jean-François Alcover, Dec 08 2019, after Alois P. Heinz *) CROSSREFS Cf. A008275, A008306, A050211, A050212. Sequence in context: A179720 A235702 A052754 * A124657 A342856 A293050 Adjacent sequences:  A050210 A050211 A050212 * A050214 A050215 A050216 KEYWORD nonn,tabl AUTHOR EXTENSIONS Offset changed from 1 to 5 by Alois P. Heinz, Sep 25 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 14:45 EDT 2021. Contains 347668 sequences. (Running on oeis4.)