login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292894
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x^k * (1 - exp(x))).
4
1, 1, -1, 1, 0, 0, 1, 0, -2, 1, 1, 0, 0, -3, 1, 1, 0, 0, -6, 8, -2, 1, 0, 0, 0, -12, 55, -9, 1, 0, 0, 0, -24, -20, 84, -9, 1, 0, 0, 0, 0, -60, 330, -637, 50, 1, 0, 0, 0, 0, -120, -120, 2478, -4992, 267, 1, 0, 0, 0, 0, 0, -360, -210, 11704, -10593, 413, 1, 0, 0, 0, 0, 0, -720, -840, 19824, -15192, 92060, -2180
OFFSET
0,9
LINKS
FORMULA
From Seiichi Manyama, Jul 09 2022: (Start)
T(n,k) = n! * Sum_{j=0..floor(n/(k+1))} (-1)^j * Stirling2(n-k*j,j)/(n-k*j)!.
T(0,k) = 1 and T(n,k) = -(n-1)! * Sum_{j=k+1..n} j/(j-k)! * T(n-j,k)/(n-j)! for n > 0. (End)
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
-1, 0, 0, 0, 0, ...
0, -2, 0, 0, 0, ...
1, -3, -6, 0, 0, ...
1, 8, -12, -24, 0, ...
-2, 55, -20, -60, -120, ...
PROG
(PARI) T(n, k) = n!*sum(j=0, n\(k+1), (-1)^j*stirling(n-k*j, j, 2)/(n-k*j)!); \\ Seiichi Manyama, Jul 09 2022
CROSSREFS
Columns k=0..2 give A000587, A292893, A292951.
Rows n=0..1 give A000012, (-1)*A000007.
Main diagonal gives A000007.
Sequence in context: A125753 A185184 A378085 * A147701 A228348 A057516
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Sep 26 2017
STATUS
approved