OFFSET
0,9
LINKS
Seiichi Manyama, Antidiagonals n = 0..139, flattened
FORMULA
From Seiichi Manyama, Jul 09 2022: (Start)
T(n,k) = n! * Sum_{j=0..floor(n/(k+1))} (-1)^j * Stirling2(n-k*j,j)/(n-k*j)!.
T(0,k) = 1 and T(n,k) = -(n-1)! * Sum_{j=k+1..n} j/(j-k)! * T(n-j,k)/(n-j)! for n > 0. (End)
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
-1, 0, 0, 0, 0, ...
0, -2, 0, 0, 0, ...
1, -3, -6, 0, 0, ...
1, 8, -12, -24, 0, ...
-2, 55, -20, -60, -120, ...
PROG
(PARI) T(n, k) = n!*sum(j=0, n\(k+1), (-1)^j*stirling(n-k*j, j, 2)/(n-k*j)!); \\ Seiichi Manyama, Jul 09 2022
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Sep 26 2017
STATUS
approved