login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292815
Nonsquarefree numbers n = p_1^s_1...p_m^s_m (m > 1) such that (p_i^s_i - 1) | n-1 for all 0 < i <= m.
0
12025, 13833, 35425, 54145, 89425, 187461, 203841, 321201, 499681, 501025, 566401, 595441, 717025, 784225, 856801, 877825, 965497, 1080801, 1165537, 1299961, 1335961, 1439425, 1566891, 1658385, 1935025, 2058049, 2514337, 2668225, 2817001, 3078361
OFFSET
1,1
COMMENTS
If squarefree numbers were accepted, then Carmichael numbers would be included. - Michel Marcus, Mar 13 2018
MAPLE
isA292815 := proc(n)
local pf, pfs;
pfs := ifactors(n)[2] ;
if nops(pfs) = 1 or issqrfree(n) then
return false;
end if;
for pf in pfs do
if modp(n-1, op(1, pf)^op(2, pf)-1) > 0 then
return false;
end if;
end do:
true ;
end proc:
for n from 1 do
if isA292815(n) then
print(n) ;
end if;
end do: # R. J. Mathar, May 02 2018
MATHEMATICA
fa[n_] := fa[n] = FactorInteger[n];
free[n_] := Union[Table[fa[n]〚i, 2〛, {i, Length[fa[n]]}]] == {1}
tes1[n_] := Union@Table[IntegerQ[(n - 1)/(fa[n][[i, 1]]^fa[n][[i, 2]] - 1)], {i, Length[fa[n]]}] == {True};
Select[1 + Range[3300200], ! free[#] && Length@fa[#] > 1 && tes1[#] &]
PROG
(PARI) isok(n) = {my(f = factor(n)); if ((#f~ > 1) && ! issquarefree(n), for (k=1, #f~, if ((n-1) % (f[k, 1]^f[k, 2] -1), return (0)); ); return (1); ); return (0); } \\ Michel Marcus, Mar 05 2018
CROSSREFS
Cf. A013929, A087442, A002997 (Carmichael numbers).
Sequence in context: A287046 A235308 A064966 * A252304 A251680 A247688
KEYWORD
nonn
AUTHOR
STATUS
approved