login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292814
G.f.: A(x) satisfies: A( 6*x - 5*A(x) ) = x - 16*x^2.
8
1, 4, -40, 1400, -68000, 4350000, -335400000, 30085500000, -3064470000000, 348742875000000, -43821408750000000, 6025223212500000000, -899952237525000000000, 145148307600812500000000, -25148944415520000000000000, 4660143903279037500000000000, -919883216910828187500000000000, 192745988160330338593750000000000, -42734275076178265882812500000000000, 9996684603960098310695312500000000000, -2460868592009779893077500000000000000000
OFFSET
1,2
COMMENTS
Conjecture: In general, if k > 0 and g.f. A(x) satisfies A((k+2)*x - (k+1)*A(x)) = x - (k*x)^2, then a(n) ~ (-1)^n * c(k) * (k*(k+1)/log(k+1))^n * n! / n^((k-1)/(k+1) + (k-2)*log(k+1)/k), where c(k) is a constant. - Vaclav Kotesovec, Oct 09 2017
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..300 (terms 1..200 from Paul D. Hanna)
FORMULA
a(n) ~ (-1)^n * c * 20^n * n! / (n^(3/5 + log(5)/2) * (log(5))^n), where c = 0.04310841216382017737... - Vaclav Kotesovec, Oct 09 2017
EXAMPLE
G.f.: A(x) = x + 4*x^2 - 40*x^3 + 1400*x^4 - 68000*x^5 + 4350000*x^6 - 335400000*x^7 + 30085500000*x^8 - 3064470000000*x^9 + 348742875000000*x^10 - 43821408750000000*x^11 + 6025223212500000000*x^12 - 899952237525000000000*x^13 + 145148307600812500000000*x^14 - 25148944415520000000000000*x^15 +...
such that A( 6*x - 5*A(x) ) = x - 16*x^2.
RELATED SERIES.
Define Ai(x) such that Ai(A(x)) = x, then Ai(x) begins:
Ai(x) = x - 4*x^2 + 72*x^3 - 2520*x^4 + 123424*x^5 - 7710448*x^6 + 579543872*x^7 - 50689868256*x^8 + 5046335530880*x^9 - 562904575158208*x^10 +...
where Ai(x - 16*x^2) = 6*x - 5*A(x).
PROG
(PARI) {a(n) = my(A=x, V=[1, 4]); for(i=1, n, V = concat(V, 0); A=x*Ser(V); V[#V] = Vec( subst(A, x, 6*x - 5*A) )[#V]/4 ); V[n]}
for(n=1, 30, print1(a(n), ", "))
KEYWORD
sign
AUTHOR
Paul D. Hanna, Sep 23 2017
STATUS
approved