login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: A(x) satisfies: A( 6*x - 5*A(x) ) = x - 16*x^2.
8

%I #15 Oct 09 2017 09:07:39

%S 1,4,-40,1400,-68000,4350000,-335400000,30085500000,-3064470000000,

%T 348742875000000,-43821408750000000,6025223212500000000,

%U -899952237525000000000,145148307600812500000000,-25148944415520000000000000,4660143903279037500000000000,-919883216910828187500000000000,192745988160330338593750000000000,-42734275076178265882812500000000000,9996684603960098310695312500000000000,-2460868592009779893077500000000000000000

%N G.f.: A(x) satisfies: A( 6*x - 5*A(x) ) = x - 16*x^2.

%C Conjecture: In general, if k > 0 and g.f. A(x) satisfies A((k+2)*x - (k+1)*A(x)) = x - (k*x)^2, then a(n) ~ (-1)^n * c(k) * (k*(k+1)/log(k+1))^n * n! / n^((k-1)/(k+1) + (k-2)*log(k+1)/k), where c(k) is a constant. - _Vaclav Kotesovec_, Oct 09 2017

%H Vaclav Kotesovec, <a href="/A292814/b292814.txt">Table of n, a(n) for n = 1..300</a> (terms 1..200 from Paul D. Hanna)

%F a(n) ~ (-1)^n * c * 20^n * n! / (n^(3/5 + log(5)/2) * (log(5))^n), where c = 0.04310841216382017737... - _Vaclav Kotesovec_, Oct 09 2017

%e G.f.: A(x) = x + 4*x^2 - 40*x^3 + 1400*x^4 - 68000*x^5 + 4350000*x^6 - 335400000*x^7 + 30085500000*x^8 - 3064470000000*x^9 + 348742875000000*x^10 - 43821408750000000*x^11 + 6025223212500000000*x^12 - 899952237525000000000*x^13 + 145148307600812500000000*x^14 - 25148944415520000000000000*x^15 +...

%e such that A( 6*x - 5*A(x) ) = x - 16*x^2.

%e RELATED SERIES.

%e Define Ai(x) such that Ai(A(x)) = x, then Ai(x) begins:

%e Ai(x) = x - 4*x^2 + 72*x^3 - 2520*x^4 + 123424*x^5 - 7710448*x^6 + 579543872*x^7 - 50689868256*x^8 + 5046335530880*x^9 - 562904575158208*x^10 +...

%e where Ai(x - 16*x^2) = 6*x - 5*A(x).

%o (PARI) {a(n) = my(A=x,V=[1,4]); for(i=1,n, V = concat(V,0); A=x*Ser(V); V[#V] = Vec( subst(A,x, 6*x - 5*A) )[#V]/4 );V[n]}

%o for(n=1,30,print1(a(n),", "))

%Y Cf. A291198, A292812, A292813, A292811, A293454, A293455, A293456.

%K sign

%O 1,2

%A _Paul D. Hanna_, Sep 23 2017