login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292767
Square array read by antidiagonals downwards: T(k,n) = sum of the site-perimeters of words of length n >= 1 over an alphabet of size k >= 1.
1
4, 6, 10, 8, 28, 18, 10, 72, 74, 28, 12, 176, 281, 152, 40, 14, 416, 1020, 762, 270, 54, 16, 960, 3591, 3664, 1680, 436, 70, 18, 2176, 12366, 17120, 10050, 3238, 658, 88, 20, 4864, 41877, 78336, 58500, 23160, 5677, 944, 108, 22, 10752, 139968, 352768, 333750, 161352, 47236, 9276, 1302, 130
OFFSET
1,1
LINKS
Aubrey Blecher, Charlotte Brennan, Arnold Knopfmacher, and Toufik Mansour, The Site-Perimeter of Words, Transactions on Combinatorics, Vol. 6 No. 2 (2017), pp. 37-48. ISSN (print): 2251-8657, ISSN (on-line): 2251-8665.
FORMULA
G.f. of row k: k*x*(36 + 12*k + (8 - 24*k - 8*k^2)*x + (2 - 5*k + 4*k^2 - k^3)*x^2)/(12*(1 - k*x)^2). - Andrew Howroyd, Oct 27 2018
EXAMPLE
Array begins (rows are indexed by k = 1,2,3,4,...; columns by n = 1,2,3,4,...):
4, 6, 8, 10, 12, 14, 16, ...
10, 28, 72, 176, 416, 960, 2176, ...
18, 74, 281, 1020, 3591, 12366, 41877, ...
28, 152, 762, 3664, 17120, 78336, 352768, ...
40, 270, 1680, 10050, 58500, 333750, 1875000, ...
54, 436, 3238, 23160, 161352, 1102464, 7420896, ...
70, 658, 5677, 47236, 383131, 3049270, 23916361, ...
...
MATHEMATICA
RowGf[k_] := k x (36 + 12k + (8 - 24k - 8k^2) x + (2 - 5k + 4k^2 - k^3) x^2)/(12(1 - k x)^2);
T[k_, n_] := SeriesCoefficient[RowGf[k], {x, 0, n}];
Table[T[k - n + 1, n], {k, 1, 10}, {n, k, 1, -1}] // Flatten (* Jean-François Alcover, Aug 27 2019, from PARI *)
PROG
(PARI)
RowGf(k) = {k*x*(36 + 12*k + (8 - 24*k - 8*k^2)*x + (2 - 5*k + 4*k^2 - k^3)*x^2)/(12*(1 - k*x)^2)}
M(k, n)={Mat(vectorv(k, k, Vec(RowGf(k) + O(x*x^n))))}
{ M(10, 8) } \\ Andrew Howroyd, Oct 27 2018
CROSSREFS
Row k=2 is A128135.
Sequence in context: A263483 A363700 A249982 * A117622 A188673 A365448
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Sep 27 2017
EXTENSIONS
Terms a(16) and beyond from Andrew Howroyd, Oct 27 2018
STATUS
approved