OFFSET
1,1
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275
Aubrey Blecher, Charlotte Brennan, Arnold Knopfmacher, and Toufik Mansour, The Site-Perimeter of Words, Transactions on Combinatorics, Vol. 6 No. 2 (2017), pp. 37-48. ISSN (print): 2251-8657, ISSN (on-line): 2251-8665.
FORMULA
G.f. of row k: k*x*(36 + 12*k + (8 - 24*k - 8*k^2)*x + (2 - 5*k + 4*k^2 - k^3)*x^2)/(12*(1 - k*x)^2). - Andrew Howroyd, Oct 27 2018
EXAMPLE
Array begins (rows are indexed by k = 1,2,3,4,...; columns by n = 1,2,3,4,...):
4, 6, 8, 10, 12, 14, 16, ...
10, 28, 72, 176, 416, 960, 2176, ...
18, 74, 281, 1020, 3591, 12366, 41877, ...
28, 152, 762, 3664, 17120, 78336, 352768, ...
40, 270, 1680, 10050, 58500, 333750, 1875000, ...
54, 436, 3238, 23160, 161352, 1102464, 7420896, ...
70, 658, 5677, 47236, 383131, 3049270, 23916361, ...
...
MATHEMATICA
RowGf[k_] := k x (36 + 12k + (8 - 24k - 8k^2) x + (2 - 5k + 4k^2 - k^3) x^2)/(12(1 - k x)^2);
T[k_, n_] := SeriesCoefficient[RowGf[k], {x, 0, n}];
Table[T[k - n + 1, n], {k, 1, 10}, {n, k, 1, -1}] // Flatten (* Jean-François Alcover, Aug 27 2019, from PARI *)
PROG
(PARI)
RowGf(k) = {k*x*(36 + 12*k + (8 - 24*k - 8*k^2)*x + (2 - 5*k + 4*k^2 - k^3)*x^2)/(12*(1 - k*x)^2)}
M(k, n)={Mat(vectorv(k, k, Vec(RowGf(k) + O(x*x^n))))}
{ M(10, 8) } \\ Andrew Howroyd, Oct 27 2018
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Sep 27 2017
EXTENSIONS
Terms a(16) and beyond from Andrew Howroyd, Oct 27 2018
STATUS
approved