login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array read by antidiagonals downwards: T(k,n) = sum of the site-perimeters of words of length n >= 1 over an alphabet of size k >= 1.
1

%I #23 Aug 27 2019 06:06:42

%S 4,6,10,8,28,18,10,72,74,28,12,176,281,152,40,14,416,1020,762,270,54,

%T 16,960,3591,3664,1680,436,70,18,2176,12366,17120,10050,3238,658,88,

%U 20,4864,41877,78336,58500,23160,5677,944,108,22,10752,139968,352768,333750,161352,47236,9276,1302,130

%N Square array read by antidiagonals downwards: T(k,n) = sum of the site-perimeters of words of length n >= 1 over an alphabet of size k >= 1.

%H Andrew Howroyd, <a href="/A292767/b292767.txt">Table of n, a(n) for n = 1..1275</a>

%H Aubrey Blecher, Charlotte Brennan, Arnold Knopfmacher, and Toufik Mansour, <a href="http://dx.doi.org/10.22108/toc.2017.21465">The Site-Perimeter of Words</a>, Transactions on Combinatorics, Vol. 6 No. 2 (2017), pp. 37-48. ISSN (print): 2251-8657, ISSN (on-line): 2251-8665.

%F G.f. of row k: k*x*(36 + 12*k + (8 - 24*k - 8*k^2)*x + (2 - 5*k + 4*k^2 - k^3)*x^2)/(12*(1 - k*x)^2). - _Andrew Howroyd_, Oct 27 2018

%e Array begins (rows are indexed by k = 1,2,3,4,...; columns by n = 1,2,3,4,...):

%e 4, 6, 8, 10, 12, 14, 16, ...

%e 10, 28, 72, 176, 416, 960, 2176, ...

%e 18, 74, 281, 1020, 3591, 12366, 41877, ...

%e 28, 152, 762, 3664, 17120, 78336, 352768, ...

%e 40, 270, 1680, 10050, 58500, 333750, 1875000, ...

%e 54, 436, 3238, 23160, 161352, 1102464, 7420896, ...

%e 70, 658, 5677, 47236, 383131, 3049270, 23916361, ...

%e ...

%t RowGf[k_] := k x (36 + 12k + (8 - 24k - 8k^2) x + (2 - 5k + 4k^2 - k^3) x^2)/(12(1 - k x)^2);

%t T[k_, n_] := SeriesCoefficient[RowGf[k], {x, 0, n}];

%t Table[T[k - n + 1, n], {k, 1, 10}, {n, k, 1, -1}] // Flatten (* _Jean-François Alcover_, Aug 27 2019, from PARI *)

%o (PARI)

%o RowGf(k) = {k*x*(36 + 12*k + (8 - 24*k - 8*k^2)*x + (2 - 5*k + 4*k^2 - k^3)*x^2)/(12*(1 - k*x)^2)}

%o M(k,n)={Mat(vectorv(k,k,Vec(RowGf(k) + O(x*x^n))))}

%o { M(10,8) } \\ _Andrew Howroyd_, Oct 27 2018

%Y Row k=2 is A128135.

%K nonn,tabl

%O 1,1

%A _N. J. A. Sloane_, Sep 27 2017

%E Terms a(16) and beyond from _Andrew Howroyd_, Oct 27 2018