|
|
A263483
|
|
a(n) = prime(n)+(prime(n) modulo 6).
|
|
1
|
|
|
4, 6, 10, 8, 16, 14, 22, 20, 28, 34, 32, 38, 46, 44, 52, 58, 64, 62, 68, 76, 74, 80, 88, 94, 98, 106, 104, 112, 110, 118, 128, 136, 142, 140, 154, 152, 158, 164, 172, 178, 184, 182, 196, 194, 202, 200, 212, 224, 232, 230, 238, 244, 242, 256, 262, 268, 274, 272, 278, 286, 284, 298, 308, 316, 314
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
For n>2, a(n)-a(n+1)=2 iff prime(n) and prime(n+1) are twin primes; e.g., a(3)-a(4)=10-8=2 and prime(3)=5 and prime(4)=7 are twin primes.
|
|
LINKS
|
|
|
FORMULA
|
|
|
MAPLE
|
p:= 1:
for n from 1 to 100 do
p:= nextprime(p);
A[n]:= p + (p mod 6);
od:
|
|
MATHEMATICA
|
Table[(p=Prime[n])+Mod[p, 6], {n, 100}]
|
|
PROG
|
(PARI) a(n) = apply(x->(x + x%6), prime(n)); \\ Michel Marcus, Oct 27 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|