Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jul 18 2018 23:44:49
%S 4,6,10,8,16,14,22,20,28,34,32,38,46,44,52,58,64,62,68,76,74,80,88,94,
%T 98,106,104,112,110,118,128,136,142,140,154,152,158,164,172,178,184,
%U 182,196,194,202,200,212,224,232,230,238,244,242,256,262,268,274,272,278,286,284,298,308,316,314
%N a(n) = prime(n)+(prime(n) modulo 6).
%C For n>2, a(n)-a(n+1)=2 iff prime(n) and prime(n+1) are twin primes; e.g., a(3)-a(4)=10-8=2 and prime(3)=5 and prime(4)=7 are twin primes.
%H Robert Israel, <a href="/A263483/b263483.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A000040(n) + A039704(n). - _Michel Marcus_, Oct 27 2015
%p p:= 1:
%p for n from 1 to 100 do
%p p:= nextprime(p);
%p A[n]:= p + (p mod 6);
%p od:
%p seq(A[n],n=1..100); # _Robert Israel_, Jul 18 2018
%t Table[(p=Prime[n])+Mod[p,6],{n,100}]
%o (PARI) a(n) = apply(x->(x + x%6), prime(n)); \\ _Michel Marcus_, Oct 27 2015
%Y Cf. A000040, A039704.
%K nonn
%O 1,1
%A _Zak Seidov_, Oct 19 2015