login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292560
Expansion of Product_{k>=1} 1/(1 + x^(k^3)).
3
1, -1, 1, -1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, 1, -1, 1, -1, 0, 0, 0, -1, 1, -1, 1, -1, 2, -2, 2, -1, 1, -1, 1, -1, 0, 0, 0, -1, 1, -1, 1, -1, 2, -2, 2, -1, 1, -1, 2, -2, 1, -1, 1, -2, 2, -2, 1, -1, 1, -1, 1, 0, 0, 0, 1, -1, 1, -1, 1, -2, 2, -2, 1, -1, 1, -2, 2, -1, 1, -1, 2, -2, 2, -1, 1
OFFSET
0,33
COMMENTS
Convolution inverse of A279329.
The difference between the number of partitions of n into an even number of cubes and the number of partitions of n into an odd number of cubes.
In general, if m > 0 and g.f. = Product_{k>=1} 1/(1 + x^(k^m)), then a(n) ~ (-1)^n * exp((m+1) * (Gamma(1/m) * Zeta(1 + 1/m) / m^2)^(m/(m+1)) * n^(1/(m+1)) / 2) * (Gamma(1/m) * Zeta(1 + 1/m))^(m/(2*(m+1))) / (sqrt(Pi*(m+1)) * 2^((m+1)/2) * m^((m-1)/(2*(m+1))) * n^((2*m+1)/(2*(m+1)))). - Vaclav Kotesovec, Sep 19 2017
FORMULA
G.f.: Product_{k>=1} 1/(1 + x^(k^3)).
a(n) ~ (-1)^n * exp(2 * (Gamma(1/3) * Zeta(4/3))^(3/4) * n^(1/4) / 3^(3/2)) * (Gamma(1/3) * Zeta(4/3))^(3/8) / (8 * 3^(1/4) * sqrt(Pi) * n^(7/8)). - Vaclav Kotesovec, Sep 19 2017
MATHEMATICA
nmax = 100; CoefficientList[Series[Product[1/(1 + x^(k^3)), {k, 1, Floor[nmax^(1/3)] + 1}], {x, 0, nmax}], x]
CROSSREFS
Cf. A081362 (m=1), A292520 (m=2).
Sequence in context: A372924 A004571 A204429 * A086137 A085976 A171624
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Sep 19 2017
STATUS
approved