|
|
A292518
|
|
Expansion of Product_{k>=1} (1 - x^(k*(k+1)/2)).
|
|
8
|
|
|
1, -1, 0, -1, 1, 0, -1, 1, 0, 1, -2, 1, 0, 1, -1, -1, 2, -1, 1, -2, 1, 0, 0, 0, 0, 1, -1, 1, -3, 2, -1, 2, -1, 0, 1, -1, 0, -2, 3, -1, 1, -2, 1, 1, -2, 0, 0, 2, 0, -1, 0, 2, -2, -1, -1, 1, 2, -1, 1, -1, 1, -2, 1, -2, 3, 1, -2, 0, -2, 3, -1, -1, 0, 3, -1, 0, -2, 1, 0, -3, 2, 2, 1, -1, -1, 0, 0, -1, 0, 2, -1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,11
|
|
COMMENTS
|
Convolution inverse of A007294.
The difference between the number of partitions of n into an even number of distinct triangular numbers and the number of partitions of n into an odd number of distinct triangular numbers.
Euler transform of {-1 if n is a triangular number else 0, n > 0} = -A010054. - Gus Wiseman, Oct 22 2018
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 0..10000
Index entries for related partition-counting sequences
|
|
FORMULA
|
G.f.: Product_{k>=1} (1 - x^(k*(k+1)/2)).
|
|
MATHEMATICA
|
nmax = 90; CoefficientList[Series[Product[1 - x^(k (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
|
|
CROSSREFS
|
Product_{k>=1} (1 - x^(k*((m-2)*k-(m-4))/2)): this sequence (m=3), A276516 (m=4), A305355 (m=5).
Cf. A007294, A010054, A024940, A280366, A320767, A320784.
Sequence in context: A187360 A334368 A240718 * A264997 A222759 A024940
Adjacent sequences: A292515 A292516 A292517 * A292519 A292520 A292521
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Ilya Gutkovskiy, Sep 18 2017
|
|
STATUS
|
approved
|
|
|
|