login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A264997 Number of partitions of n into distinct parts of the form 3^a*5^b. 3
1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 0, 1, 2, 2, 1, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 1, 2, 3, 2, 3, 3, 2, 4, 3, 1, 3, 3, 3, 3, 3, 3, 4, 4, 2, 4, 3, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 3, 4, 2, 5, 5, 3, 4, 4, 4, 5, 4, 2, 6, 6, 3, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,10
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..20000 (first 1001 terms from Joseph Myers)
British Mathematical Olympiad 2015/16, Olympiad Round 1, Problem 6, Friday, 27 November 2015.
FORMULA
G.f.: (1+x)(1+x^3)(1+x^5)(1+x^9)(1+x^15)....
EXAMPLE
28 = 27 + 1 = 25 + 3 = 15 + 9 + 3 + 1, so a(28) = 3.
MATHEMATICA
nmax = 100; A003593 = Select[Range[nmax], PowerMod[15, #, #] == 0 &]; CoefficientList[Series[Product[(1 + x^(A003593[[k]])), {k, 1, Length[A003593]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 01 2015 *)
PROG
(Haskell)
import Data.MemoCombinators (memo2, list, integral)
a264997 n = a264997_list !! (n-1)
a264997_list = f 0 [] a003593_list where
f u vs ws'@(w:ws) | u < w = (p' vs u) : f (u + 1) vs ws'
| otherwise = f u (vs ++ [w]) ws
p' = memo2 (list integral) integral p
p _ 0 = 1
p [] _ = 0
p (k:ks) m = if m < k then 0 else p' ks (m - k) + p' ks m
-- Reinhard Zumkeller, Dec 18 2015
CROSSREFS
Sequence in context: A240718 A357071 A292518 * A222759 A357072 A024940
KEYWORD
easy,nonn,look
AUTHOR
Joseph Myers, Nov 29 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 18:28 EST 2023. Contains 367660 sequences. (Running on oeis4.)