OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A292480 for a guide to related sequences.
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5, -5, 7, 2)
FORMULA
G.f.: -(((1 + x) (1 + 3 x^2))/((-1 + 4 x + x^2) (1 - x + 2 x^2))).
a(n) = 5*a(n-1) - 5*a(n-2) + 7*a(n-3) + 2*a(n-4) for n >= 5.
MATHEMATICA
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s - 2 s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292485 *)
LinearRecurrence[{5, -5, 7, 2}, {1, 6, 28, 120}, 30] (* Harvey P. Dale, Oct 14 2023 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 02 2017
STATUS
approved