login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292448 Primes q of the form sigma((p + 1) / 2) where p is a prime. 2
3, 7, 13, 31, 127, 307, 1723, 2801, 3541, 8191, 19531, 86143, 131071, 492103, 524287, 552793, 684757, 704761, 735307, 797161, 1353733, 1886503, 3413257, 3894703, 5473261, 7094233, 7781311, 9250723, 10378063, 12655807, 18143341, 19443691, 22292563, 23907211 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Mersenne primes p = 2^k - 1 (A000668) are terms: sigma((p + 1) / 2) = sigma((2^k - 1 + 1) / 2) = sigma((2^(k - 1)) = 2^k - 1 = p.

2801 is the smallest term of the form 6*k + 5. The next one is 39449441. Note that both of them are of the form 1 + t + t^2 + t^3 + t^4 where t is a prime number. - Altug Alkan, Oct 03 2017

LINKS

Table of n, a(n) for n=1..34.

EXAMPLE

Prime 13 is term because there is prime 17 with sigma((17 + 1) / 2) = sigma(9) = 13.

MATHEMATICA

Reap[Do[If[PrimeQ@ #, Sow@ #] &@DivisorSigma[1, (Prime@ i + 1)/2], {i, 10^6}] ][[-1, 1]] (* Michael De Vlieger, Sep 16 2017 *)

PROG

(MAGMA) Set(Sort([SumOfDivisors((n+1) div 2): n in [1..5*10^7] | IsPrime(n) and IsPrime(SumOfDivisors((n+1) div 2)) and SumOfDivisors((n+1) div 2) le 5*10^7]))

CROSSREFS

Cf. A000203, A000668.

Sequence in context: A087578 A023195 A100382 * A222227 A152981 A112040

Adjacent sequences:  A292445 A292446 A292447 * A292449 A292450 A292451

KEYWORD

nonn

AUTHOR

Jaroslav Krizek, Sep 16 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 22:39 EST 2019. Contains 329305 sequences. (Running on oeis4.)