login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292448
Primes q of the form sigma((p + 1) / 2) where p is a prime.
2
3, 7, 13, 31, 127, 307, 1723, 2801, 3541, 8191, 19531, 86143, 131071, 492103, 524287, 552793, 684757, 704761, 735307, 797161, 1353733, 1886503, 3413257, 3894703, 5473261, 7094233, 7781311, 9250723, 10378063, 12655807, 18143341, 19443691, 22292563, 23907211
OFFSET
1,1
COMMENTS
Mersenne primes p = 2^k - 1 (A000668) are terms: sigma((p + 1) / 2) = sigma((2^k - 1 + 1) / 2) = sigma(2^(k - 1)) = 2^k - 1 = p.
2801 is the smallest term of the form 6*k + 5. The next one is 39449441. Note that both of them are of the form 1 + t + t^2 + t^3 + t^4 where t is a prime number. - Altug Alkan, Oct 03 2017
EXAMPLE
Prime 13 is a term because there is prime 17 with sigma((17 + 1) / 2) = sigma(9) = 13.
MATHEMATICA
max = 10^6; Select[Union@ Reap[Do[If[PrimeQ@ #, Sow@ #] &@DivisorSigma[1, (Prime@ i + 1)/2], {i, max}] ][[-1, 1]], # < Prime[max]/2 &] (* Michael De Vlieger, Sep 16 2017, corrected by Amiram Eldar, Oct 08 2021 *)
PROG
(Magma) m := 5*10^7; Set(Sort([SumOfDivisors((n+1) div 2): n in [1..2*m] | IsPrime(n) and IsPrime(SumOfDivisors((n+1) div 2)) and SumOfDivisors((n+1) div 2) le m])); // corrected by Amiram Eldar, Oct 08 2021
(PARI) lista(nn) = {my(list = List()); forprime(p=3, 2*nn, if (isprime(q=sigma((p+1)/2)), listput(list, q)); ); select(x->(x <= nn), vecsort(Vec(list))); } \\ Michel Marcus, Oct 08 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Sep 16 2017
STATUS
approved