login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292420
Expansion of a q-series used by Ramanujan in his Lost Notebook.
2
1, 2, 2, 3, 4, 4, 6, 8, 8, 11, 14, 16, 20, 24, 28, 34, 42, 48, 57, 68, 78, 94, 110, 126, 148, 172, 198, 230, 266, 304, 351, 404, 460, 526, 602, 684, 780, 888, 1004, 1140, 1290, 1456, 1646, 1856, 2088, 2351, 2644, 2964, 3326, 3728, 4168, 4664, 5212, 5812, 6484
OFFSET
0,2
REFERENCES
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, page 1, 1st equation with a=-1.
LINKS
FORMULA
G.f. is the product of the g.f. of A000009 and A143064.
Given g.f. A(x), then A(x^2) = 1 / (1+x) + x / (1+x^3) + x^2 * (1+x^2) / ((1+x^3) * (1+x^5)) + x^3 * (1+x^2) / ((1+x^5) * (1+x^7)) + x^4 * (1+x^2) * (1+x^4) / ((1+x^5) * (1+x^7) * (1+x^9)) + ...
EXAMPLE
G.f. = 1 + 2*x + 2*x^2 + 3*x^3 + 4*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 8*x^8 + ...
MAPLE
N:= 200: # to get a(0)..a(N)
g143064:= add(x^k/mul(1+x^(2*j+1), j=0..k), k=0..2*N):
g000009:= mul(1+x^(2*k), k=1..N):
S:= series(g143064*g000009, x, 2*N+2):
seq(coeff(S, x, 2*j), j=0..N); # Robert Israel, Sep 17 2017
MATHEMATICA
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ QPochhammer[ x^2] / QPochhammer[ x] Sum[ (-1)^k x^(3 k^2 + 2 k) (1 + x^(2 k + 1)), {k, 0, Sqrt[n / 3]}], {x, 0, n}]];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) / eta(x + A) * sum(k=0, sqrtint(n \ 3), (-1)^k * x^(3*k^2 + 2*k) * (1 + x^(2*k + 1)), A), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 16 2017
STATUS
approved