OFFSET
0,10
COMMENTS
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
FORMULA
a(2k) = floor(Fibonacci(k)/2), a(2k+1) = ceiling(Fibonacci(k)/2) = Fibonacci(k)-a(2k).
Empirical g.f.: x^3*(1+x+x^2+2*x^3+x^4+x^5) / ((1+x)*(1-x+x^2)*(1+x+x^2)*(1-x^2-x^4)). - Colin Barker, Aug 02 2016
MATHEMATICA
Table[{Floor[Fibonacci[j]/
2], Fibonacci[j] - Floor[Fibonacci[j]/2]}, {j, 0, 30}]
Flatten[%]
PROG
(PARI) a(n)=(fibonacci(n\2)+n%2)\2 \\ M. F. Hasler, Nov 24 2010
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula and Gary W. Adamson, Nov 24 2010
STATUS
approved