login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of a q-series used by Ramanujan in his Lost Notebook.
2

%I #22 Sep 17 2017 13:35:58

%S 1,2,2,3,4,4,6,8,8,11,14,16,20,24,28,34,42,48,57,68,78,94,110,126,148,

%T 172,198,230,266,304,351,404,460,526,602,684,780,888,1004,1140,1290,

%U 1456,1646,1856,2088,2351,2644,2964,3326,3728,4168,4664,5212,5812,6484

%N Expansion of a q-series used by Ramanujan in his Lost Notebook.

%D Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, page 1, 1st equation with a=-1.

%H Robert Israel, <a href="/A292420/b292420.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f. is the product of the g.f. of A000009 and A143064.

%F Given g.f. A(x), then A(x^2) = 1 / (1+x) + x / (1+x^3) + x^2 * (1+x^2) / ((1+x^3) * (1+x^5)) + x^3 * (1+x^2) / ((1+x^5) * (1+x^7)) + x^4 * (1+x^2) * (1+x^4) / ((1+x^5) * (1+x^7) * (1+x^9)) + ...

%e G.f. = 1 + 2*x + 2*x^2 + 3*x^3 + 4*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 8*x^8 + ...

%p N:= 200: # to get a(0)..a(N)

%p g143064:= add(x^k/mul(1+x^(2*j+1),j=0..k),k=0..2*N):

%p g000009:= mul(1+x^(2*k),k=1..N):

%p S:= series(g143064*g000009,x,2*N+2):

%p seq(coeff(S,x,2*j),j=0..N); # _Robert Israel_, Sep 17 2017

%t a[ n_] := If[ n < 0, 0, SeriesCoefficient[ QPochhammer[ x^2] / QPochhammer[ x] Sum[ (-1)^k x^(3 k^2 + 2 k) (1 + x^(2 k + 1)), {k, 0, Sqrt[n / 3]}], {x, 0, n}]];

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) / eta(x + A) * sum(k=0, sqrtint(n \ 3), (-1)^k * x^(3*k^2 + 2*k) * (1 + x^(2*k + 1)), A), n))};

%Y Cf. A000009, A143064, A292445.

%K nonn

%O 0,2

%A _Michael Somos_, Sep 16 2017