login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291937
G.f.: Sum_{n=-oo..+oo} n * x^n * (1 - x^n)^n.
9
1, 2, 0, 4, -3, 6, -3, 8, -15, 28, -24, 12, 0, 14, -48, 96, -95, 18, 55, 20, -180, 232, -120, 24, -35, 76, -168, 460, -580, 30, 515, 32, -927, 804, -288, 456, -497, 38, -360, 1288, -1169, 42, 847, 44, -2958, 3700, -528, 48, -2599, 148, 2526, 2772, -5537, 54, 595, 5336, -6930, 3820, -840, 60, -791, 62, -960, 6448, -12351, 12936, -3167, 68, -15435, 6648, 21365, 72, -26646, 74, -1368, 35776, -23730, 8394, -16548, 80, 7101
OFFSET
0,2
COMMENTS
Compare o.g.f. to: Sum_{n=-oo..+oo} x^n * (1 - x^n)^n = 0.
Compare l.g.f. to: Sum_{n=-oo..+oo, n<>0} x^n * (1 - x^(n-1))^n / n = -log(1-x).
Whenever a(n+2) is a multiple of n > 7, then a(n+2)/n = -(n+4)/4, with very few exceptions (n = 18, 131, 412, ... and n = 10, a(12) = 0). In particular, when n-1 is a prime of the form p = 4k + 3, then a(p+3) = -(k+2)(p+1) (as compared to a(p) = p+1), except for k = 11, 16, 26, 31, 37, 41, .... What exactly are these exceptions? - M. F. Hasler, Oct 10 2017
LINKS
FORMULA
The o.g.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) A(x) = Sum_{n=-oo..+oo} n * x^n * (1 - x^n)^n.
(2) A(x) = Sum_{n=-oo..+oo} n^2 * x^(2*n) * (1 - x^n)^(n-1).
(3) A(x) = Sum_{n=-oo..+oo} -n * x^(2*n) * (1 - x^n)^(n-1).
(4) A(x) = Sum_{n=-oo..+oo} -(-1)^n * n * x^(n^2-n) / (1 - x^n)^n.
(5) A(x) = Sum_{n=-oo..+oo} -(-1)^n * n^2 * x^(n^2-n) / (1 - x^n)^(n+1).
(6) A(x) = Limit_{k->oo} Sum_{n=-oo..+oo} x^(n-k) * (1 - x^n - x^(n+k))^n.
(7) A(x) = Limit_{k->oo} Sum_{n=-oo..+oo} x^(n-k) * (1 - x^n + n*x^(n+k))^n.
The l.g.f. L(x) = Sum_{n>=1} a(n) * x^n / n satisfies:
(8) L(x) = -1 + Sum_{n=-oo..+oo, n<>0} x^n * (1 - x^n)^n / n.
a(p) = p+1 for odd primes p.
EXAMPLE
O.g.f.: A(x) = 1 + 2*x + 4*x^3 - 3*x^4 + 6*x^5 - 3*x^6 + 8*x^7 - 15*x^8 + 28*x^9 - 24*x^10 + 12*x^11 + 14*x^13 - 48*x^14 + 96*x^15 - 95*x^16 + 18*x^17 + 55*x^18 + 20*x^19 - 180*x^20 + 232*x^21 - 120*x^22 + 24*x^23 - 35*x^24 + 76*x^25 - 168*x^26 + 460*x^27 - 580*x^28 + 30*x^29 + 515*x^30 +...
where A(x) = P(x) + Q(x) with
P(x) = x*(1-x) + 2*x^2*(1-x^2)^2 + 3*x^3*(1-x^3)^3 + 4*x^4*(1-x^4)^4 + 5*x^5*(1-x^5)^5 +...+ n * x^n * (1 + x^n)^n + ...
Q(x) = 1/(1-x) - 2*x^2/(1-x^2)^2 + 3*x^6/(1-x^3)^3 - 4*x^12/(1-x^4)^4 + 5*x^20/(1-x^5)^5 + ... + -(-1)^n * n * x^(n^2-n) / (1 - x^n)^n + ...
Explicitly,
P(x) = x + x^2 + 3*x^3 + 5*x^5 - x^6 + 7*x^7 - 8*x^8 + 18*x^9 - 15*x^10 + 11*x^11 - 3*x^12 + 13*x^13 - 35*x^14 + 65*x^15 - 64*x^16 + 17*x^17 + 27*x^18 + 19*x^19 - 126*x^20 + 168*x^21 - 99*x^22 + 23*x^23 - 16*x^24 + 50*x^25 - 143*x^26 + 351*x^27 - 413*x^28 + 29*x^29 + 340*x^30 + ...
Q(x) = 1 + x - x^2 + x^3 - 3*x^4 + x^5 - 2*x^6 + x^7 - 7*x^8 + 10*x^9 - 9*x^10 + x^11 + 3*x^12 + x^13 - 13*x^14 + 31*x^15 - 31*x^16 + x^17 + 28*x^18 + x^19 - 54*x^20 + 64*x^21 - 21*x^22 + x^23 - 19*x^24 + 26*x^25 - 25*x^26 + 109*x^27 - 167*x^28 + x^29 + 175*x^30 + ...
Also, A(x) = M(x) + N(x) with
M(x) = x^2 + 4*x^4*(1-x^2) + 9*x^6*(1-x^3)^2 + 16*x^8*(1-x^4)^3 + 25*x^10*(1-x^5)^4 + ... + n^2 * x^(2*n) * (1 - x^n)^(n-1) + ...
N(x) = 1/(1-x)^2 - 4*x^2/(1-x^2)^3 + 9*x^6/(1-x^3)^4 - 16*x^12/(1-x^4)^5 + 25*x^20/(1-x^5)^6 + ... + -(-1)^n * n^2 * x^(n^2-n) / (1 - x^n)^(n+1) + ...
Explicitly,
M(x) = x^2 + 4*x^4 + 5*x^6 + 16*x^8 - 18*x^9 + 25*x^10 - 3*x^12 + 49*x^14 - 100*x^15 + 112*x^16 - 99*x^18 + 234*x^20 - 294*x^21 + 121*x^22 + 56*x^24 - 100*x^25 + 169*x^26 - 648*x^27 + 931*x^28 - 1010*x^30 + ...
N(x) = 1 + 2*x - x^2 + 4*x^3 - 7*x^4 + 6*x^5 - 8*x^6 + 8*x^7 - 31*x^8 + 46*x^9 - 49*x^10 + 12*x^11 + 3*x^12 + 14*x^13 - 97*x^14 + 196*x^15 - 207*x^16 + 18*x^17 + 154*x^18 + 20*x^19 - 414*x^20 + 526*x^21 - 241*x^22 + 24*x^23 - 91*x^24 + 176*x^25 - 337*x^26 + 1108*x^27 - 1511*x^28 + 30*x^29 + 1525*x^30 + ...
Terms at powers of 2 begin:
a(2^n) = [2, 0, -3, -15, -95, -927, -12351, -457215, -137484287, -71927383551, -12774376215944191, -2073810501234874519551, -78004011261694477161745918353407, ...].
Terms at powers of 3 begin:
a(3^n) = [2, 4, 28, 460, 10774, 80195104, 2894790054826, ..., A292184(n), ...].
Terms at powers of 5 begin:
a(5^n) = [2, 6, 76, 379626, 1259880626, 4828768869002981409762696876, ...].
MATHEMATICA
terms = 200; Sum[n*x^n*(1 - x^n)^n, {n, -terms, terms}] + O[x]^terms //
CoefficientList[#, x]& (* Jean-François Alcover, Oct 11 2017 *)
PROG
(PARI) {a(n)=my(l=1+O(x^(2*n+2))); polcoeff(sum(k=-n-2, n+2, k*x^k*(l-x^k)^k), n)} \\ Edited by M. F. Hasler, Oct 11 2017
(PARI) {a(n) = my(l=1+O(x^(2*n+2))); polcoeff(sum(k=-n-2, n+2, if(k, k^2 * x^(2*k) * (l - x^k)^(k-1))), n)} \\ Edited by M. F. Hasler, Oct 11 2017
(PARI) {a(n) = my(x='x+O('x^(2*n+2))); polcoeff(sum(k=-n-2, sqrtint(2*n)+2, -(-1)^k * k * x^(k^2-k) / (1 - x^k)^k), n)} \\ Edited by M. F. Hasler, Oct 11 2017
(PARI) {a(n) = my(x='x+O('x^(2*n+2))); polcoeff( sum(k=-n-2, sqrtint(2*n), if(k, -(-1)^k * k * x^(k^2-k) / (1 - x^k)^(k+1) )), n)} \\ Edited by M. F. Hasler, Oct 11 2017
for(n=0, 80, print1(a(n), ", "))
(PARI) A291937_vec(n)={my(x='x+O('x^(2*n+2))); -Vec(sum(k=-n-2, sqrtint(2*n), if(k, (-1)^k*k*x^(k^2-k)/(1-x^k)^(k+1))))[1..n+1]} \\ In case several values in a(0..n) are required, it is most efficient to compute the whole vector at once. E.g., sum(n=0..150, a(n)) takes ~ 10 sec., vecsum(A291937_vec(150)) takes ~ 0.1 sec. - M. F. Hasler, Oct 11 2017
CROSSREFS
KEYWORD
sign,look
AUTHOR
Paul D. Hanna, Sep 06 2017
STATUS
approved