login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A291758
Compound filter (prime signature of n & sum of squarefree divisors of n): a(n) = P(A046523(n), A048250(n)), where P(n,k) is sequence A000027 used as a pairing function.
4
1, 8, 12, 19, 23, 142, 38, 53, 25, 259, 80, 265, 107, 412, 412, 169, 173, 265, 212, 418, 672, 826, 302, 619, 40, 1087, 63, 607, 467, 5080, 530, 593, 1384, 1717, 1384, 1117, 743, 2086, 1836, 844, 905, 7780, 992, 1093, 607, 2932, 1178, 1759, 59, 418, 2932, 1390, 1487, 619, 2932, 1105, 3576, 4471, 1832, 8575, 1955, 5056, 915, 2209, 3922, 14908, 2348, 2092, 5056
OFFSET
1,2
LINKS
FORMULA
a(n) = (1/2)*(2 + ((A046523(n)+A048250(n))^2) - A046523(n) - 3*A048250(n)).
PROG
(PARI)
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
A291758(n) = (1/2)*(2 + ((A046523(n)+A048250(n))^2) - A046523(n) - 3*A048250(n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 10 2017
STATUS
approved