login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291320
Numbers k such that uphi(k) is equal to the sum of the proper unitary divisors of k.
0
2, 600, 25584, 97464, 826560, 1249920, 50725248, 1372734720, 702637447680
OFFSET
1,1
COMMENTS
Or numbers k such that usigma(k) - k = uphi(k) where usigma(k) = A034448(k) and uphi(k) = A047994(k).
a(10) > 10^13. - Giovanni Resta, May 12 2020
EXAMPLE
600 = 2^3*3*5^2 is a term because usigma(600) - uphi(600) = (2^3+1)*(3+1)*(5^2+1) - (2^3-1)*(3-1)*(5^2-1) = 600.
MATHEMATICA
ok[n_] := Block[{p = Power @@@ FactorInteger[n]}, Times @@ (p + 1) == n + Times @@ (p - 1)]; Select[Range[2, 10^6], ok] (* Giovanni Resta, Aug 22 2017 *)
PROG
(PARI) usigma(n) = sumdivmult(n, d, if(gcd(d, n/d)==1, d));
uphi(n) = my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1);
isok(n) = usigma(n)-uphi(n)==n;
(PARI) list(lim)=my(v=List()); forfactored(n=2, lim\1, if(sumdivmult(n, d, if(gcd(d, n[1]/d)==1, d))-prod(i=1, #n[2]~, n[2][i, 1]^n[2][i, 2]-1)==n[1], listput(v, n[1]))); Vec(v) \\ Charles R Greathouse IV, Aug 22 2017
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Altug Alkan, Aug 22 2017
EXTENSIONS
a(8) from Giovanni Resta, Aug 22 2017
a(9) from Giovanni Resta, May 12 2020
STATUS
approved