Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jul 24 2021 01:10:43
%S 2,600,25584,97464,826560,1249920,50725248,1372734720,702637447680
%N Numbers k such that uphi(k) is equal to the sum of the proper unitary divisors of k.
%C Or numbers k such that usigma(k) - k = uphi(k) where usigma(k) = A034448(k) and uphi(k) = A047994(k).
%C a(10) > 10^13. - _Giovanni Resta_, May 12 2020
%e 600 = 2^3*3*5^2 is a term because usigma(600) - uphi(600) = (2^3+1)*(3+1)*(5^2+1) - (2^3-1)*(3-1)*(5^2-1) = 600.
%t ok[n_] := Block[{p = Power @@@ FactorInteger[n]}, Times @@ (p + 1) == n + Times @@ (p - 1)]; Select[Range[2, 10^6], ok] (* _Giovanni Resta_, Aug 22 2017 *)
%o (PARI) usigma(n) = sumdivmult(n, d, if(gcd(d, n/d)==1, d));
%o uphi(n) = my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1);
%o isok(n) = usigma(n)-uphi(n)==n;
%o (PARI) list(lim)=my(v=List()); forfactored(n=2,lim\1, if(sumdivmult(n, d, if(gcd(d, n[1]/d)==1, d))-prod(i=1, #n[2]~, n[2][i,1]^n[2][i,2]-1)==n[1], listput(v,n[1]))); Vec(v) \\ _Charles R Greathouse IV_, Aug 22 2017
%Y Cf. A034448, A047994, A063919.
%K nonn,more
%O 1,1
%A _Altug Alkan_, Aug 22 2017
%E a(8) from _Giovanni Resta_, Aug 22 2017
%E a(9) from _Giovanni Resta_, May 12 2020