login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291316
Expansion of x/(1-x) + x^4*(1-x)/(1-x^3) + x^7*(1-x)*(1-x^3)/(1-x^5) + ... in powers of x.
0
1, 1, 1, 2, 0, 1, 3, -1, 1, 2, 0, 2, 1, 0, -1, 4, 2, -1, 2, -3, 4, 3, -1, 2, 0, 1, 1, 2, -2, 2, 5, 2, -3, 0, 1, -1, 6, 0, 4, -2, -1, 3, -1, 2, 0, 4, -2, 2, 4, -2, 1, 5, -2, -2, -2, 3, 6, 1, 3, -2, 4, -3, -1, -2, 3, 6, 2, 0, -4, 5, 1, 3, -1, 0, 0, 4, -1, -2, 4
OFFSET
1,4
LINKS
George E. Andrews, The Bhargava-Adiga Summation and Partitions, 2016. See equation (1.5)
FORMULA
a(n) = A008443(n) - A290735(n) = A290737(n) - A143064(n).
EXAMPLE
G.f. = x + x^2 + x^3 + 2*x^4 + x^6 + 3*x^7 - x^8 + x^9 + 2*x^10 + ...
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); A = sum(k=0, (n-1)\3, x^(3*k+1) * prod(i=1, k, 1 - x^(2*i-1), 1 + A) / (1 - x^(2*k+1)) ); polcoeff(A, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 22 2017
STATUS
approved