login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of x/(1-x) + x^4*(1-x)/(1-x^3) + x^7*(1-x)*(1-x^3)/(1-x^5) + ... in powers of x.
0

%I #8 Dec 18 2023 12:11:03

%S 1,1,1,2,0,1,3,-1,1,2,0,2,1,0,-1,4,2,-1,2,-3,4,3,-1,2,0,1,1,2,-2,2,5,

%T 2,-3,0,1,-1,6,0,4,-2,-1,3,-1,2,0,4,-2,2,4,-2,1,5,-2,-2,-2,3,6,1,3,-2,

%U 4,-3,-1,-2,3,6,2,0,-4,5,1,3,-1,0,0,4,-1,-2,4

%N Expansion of x/(1-x) + x^4*(1-x)/(1-x^3) + x^7*(1-x)*(1-x^3)/(1-x^5) + ... in powers of x.

%H George E. Andrews, <a href="https://georgeandrews1.github.io/pdf/320.pdf">The Bhargava-Adiga Summation and Partitions</a>, 2016. See equation (1.5)

%F a(n) = A008443(n) - A290735(n) = A290737(n) - A143064(n).

%e G.f. = x + x^2 + x^3 + 2*x^4 + x^6 + 3*x^7 - x^8 + x^9 + 2*x^10 + ...

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); A = sum(k=0, (n-1)\3, x^(3*k+1) * prod(i=1,k, 1 - x^(2*i-1), 1 + A) / (1 - x^(2*k+1)) ); polcoeff(A, n))};

%Y Cf. A008443, A143064, A290735, A290737.

%K sign

%O 1,4

%A _Michael Somos_, Aug 22 2017