login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291185
a(n) = the smallest number k such that sigma(k) / phi(k) >= n.
0
1, 2, 2, 6, 6, 6, 12, 30, 30, 60, 120, 210, 420, 420, 840, 2520, 9240, 9240, 27720, 55440, 120120, 360360, 720720, 2162160, 6126120, 12252240, 36756720, 116396280, 232792560, 698377680, 2677114440, 5354228880, 26771144400, 155272637520, 465817912560
OFFSET
1,2
COMMENTS
a(n) = the smallest number k such that A000203(k) / A000010(k) = A289336(k) / A289412(k) >= n.
EXAMPLE
For n = 4; a(4) = 6 because 6 is the smallest number with sigma(6) / phi(6) = 12 / 2 = 6 >= 2.
MAPLE
b:= 0:
for n from 1 to 3*10^6 do
r:= floor(numtheory:-sigma(n)/numtheory:-phi(n));
if r > b then
for i from b+1 to r do A[i]:= n od:
b:= r;
fi
od:
seq(A[i], i=1..b); # Robert Israel, Aug 21 2017
MATHEMATICA
With[{s = KeySort@ PositionIndex@ Array[Floor[DivisorSigma[1, #]/EulerPhi@ #] &, 10^6]}, Function[t, Reverse@ FoldList[Min, #] &@ Reverse@ TakeWhile[#, # > 0 &] &@ ReplacePart[t, Map[# -> Lookup[s, #][[1]] &, Keys@ s]]]@ ConstantArray[0, Max@ Keys@ s]] (* Michael De Vlieger, Aug 19 2017 *) (* or *)
r = 1; Reap[ Do[z = DivisorSigma[1, n]/EulerPhi@ n; While[z >= r, r++; Sow@ n], {n, 10^6}]][[2, 1]] (* Giovanni Resta, Aug 21 2017 *)
PROG
(Magma) a:=1; S:=[a]; for n in [2..24] do k:=0; flag:= true; while flag do k+:=1; if &+[d: d in Divisors(k)] / EulerPhi(k) ge n then Append(~S, k); a:=k; flag:=false; end if; end while; end for; S;
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Aug 19 2017
EXTENSIONS
a(25)-a(35) from Giovanni Resta, Aug 21 2017
STATUS
approved