login
A291102
Number of maximal irredundant sets in the n-pan graph.
1
2, 2, 3, 7, 9, 13, 19, 24, 39, 63, 87, 124, 183, 272, 405, 593, 867, 1261, 1869, 2760, 4046, 5936, 8712, 12817, 18861, 27720, 40711, 59792, 87915, 129250, 189946, 279118, 410135, 602803, 886008, 1302157, 1913622, 2812220, 4133091, 6074385, 8927330, 13119959
OFFSET
1,1
COMMENTS
Sequence extended to a(1)-a(2) using the formula/recurrence. - Andrew Howroyd, Aug 23 2017
LINKS
Eric Weisstein's World of Mathematics, Maximal Irredundant Set
Eric Weisstein's World of Mathematics, Pan Graph
Index entries for linear recurrences with constant coefficients, signature (0, 1, 1, 1, 1, 0, -1, -2, -1, 2, 1, 0, 0, -1).
FORMULA
From Andrew Howroyd, Aug 23 2017: (Start)
a(n) = a(n-2) + a(n-3) + a(n-4) + a(n-5) - a(n-7) - 2*a(n-8) - a(n-9) + 2*a(n-10) + a(n-11) - a(n-14) for n > 14.
G.f.: x*(2 + 2*x + x^2 + 3*x^3 + 2*x^4 - x^5 - 2*x^6 - 6*x^7 - 3*x^8 + 7*x^9 + 3*x^10 - x^11 - 4*x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14).
(End)
MATHEMATICA
Table[-RootSum[1 - #^3 - 2 #^4 + #^5 + 2 #^6 + #^7 - #^9 - #^10 - #^11 - #^12 + #^14 &, 500851004670498 #^(n+1) - 3689002954543242 #^(n+2) - 4674357321032747 #^(n+3) - 11682114439256677 #^(n+4) + 4235991226348286 #^(n+5) + 7038537508218316 #^(n+6) + 7181640141870472 #^(n+7) + 1546373234795414 #^(n+8) - 8648457478830123 #^(n+9) - 8135065519248445 #^(n+10) - 4540890555566032 #^(n+11) - 5314826024895471 #^(n+12) - 1546564184442276 #^(n+13) + 6933486092556085 #^(n+14) &]/47617929706047629, {n, 20}]
LinearRecurrence[{0, 1, 1, 1, 1, 0, -1, -2, -1, 2, 1, 0, 0, -1}, {2, 2, 3, 7, 9, 13, 19, 24, 39, 63, 87, 124, 183, 272}, 20]
CoefficientList[Series[(2 + 2 x + x^2 + 3 x^3 + 2 x^4 - x^5 - 2 x^6 - 6 x^7 - 3 x^8 + 7 x^9 + 3 x^10 - x^11 - 4 x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2 x^8 + x^9 - 2 x^10 - x^11 + x^14), {x, 0, 20}], x]
PROG
(PARI) Vec((2 + 2*x + x^2 + 3*x^3 + 2*x^4 - x^5 - 2*x^6 - 6*x^7 - 3*x^8 + 7*x^9 + 3*x^10 - x^11 - 4*x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14)+O(x^40)) \\ Andrew Howroyd, Aug 23 2017
CROSSREFS
Sequence in context: A160433 A043550 A237988 * A208494 A036060 A227300
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Aug 17 2017
EXTENSIONS
a(1)-a(2) and terms a(21) and beyond from Andrew Howroyd, Aug 23 2017
STATUS
approved