login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291107
Number of irredundant sets in the n-pan graph.
1
3, 5, 7, 16, 26, 42, 72, 125, 216, 367, 629, 1079, 1852, 3173, 5438, 9323, 15984, 27401, 46971, 80522, 138039, 236639, 405665, 695425, 1192158, 2043700, 3503484, 6005970, 10295947, 17650192, 30257465, 51869927, 88919855, 152434004, 261315377, 447969116, 767946883
OFFSET
1,1
COMMENTS
Extended to a(1)-a(2) using the formula/recurrence.
LINKS
Eric Weisstein's World of Mathematics, Irredundant Set
Eric Weisstein's World of Mathematics, Pan Graph
FORMULA
a(n) = a(n-1) + a(n-2) + a(n-4) - a(n-6).
G.f.: (x (3 + 2 x - x^2 + 4 x^3 - 5 x^5))/(1 - x - x^2 - x^4 + x^6).
MATHEMATICA
Table[RootSum[1 - #^2 - #^4 - #^5 + #^6 &, 59603 #^n - 12384 #^(1 + n) - 10700 #^(2 + n) + 17668 #^(3 + n) + 3457 #^(4 + n) + 1652 #^(5 + n) &]/89653, {n, 20}]
LinearRecurrence[{1, 1, 0, 1, 0, -1}, {3, 5, 7, 16, 26, 42, 72, 125}, 20]
CoefficientList[Series[(3 + 2 x - x^2 + 4 x^3 - 5 x^5)/(1 - x - x^2 - x^4 + x^6), {x, 0, 20}], x]
CROSSREFS
Sequence in context: A247356 A291736 A010070 * A132445 A307437 A070846
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Aug 17 2017
STATUS
approved