login
A247356
Numbers k such that d(r,k) = 1 and d(s,k) = 1, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(3)}, and { } = fractional part.
4
3, 5, 7, 16, 17, 19, 22, 23, 30, 32, 33, 41, 45, 49, 56, 61, 67, 74, 75, 76, 88, 90, 91, 98, 99, 101, 105, 108, 115, 116, 117, 120, 125, 131, 137, 138, 140, 141, 154, 158, 164, 167, 170, 172, 175, 178, 185, 188, 189, 193, 194, 199, 203, 221, 230, 231, 234
OFFSET
1,1
COMMENTS
Every positive integer lies in exactly one of these: A246356, A246357, A246358, A247356.
LINKS
EXAMPLE
{sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1,...
{sqrt(3)} has binary digits 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,..
so that a(1) = 3 and a(2) = 5.
MATHEMATICA
z = 500; r = FractionalPart[Sqrt[2]]; s = FractionalPart[Sqrt[3]];
u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
Flatten[Position[t1, 1]] (* A246356 *)
Flatten[Position[t2, 1]] (* A246357 *)
Flatten[Position[t3, 1]] (* A246358 *)
Flatten[Position[t4, 1]] (* A247356 *)
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Sep 17 2014
STATUS
approved