OFFSET
0,4
COMMENTS
These three sequences:
b(3n+3) = b(3n) + b(3n+1) + b(3n+2),
b(3n+4) = 2*b(3n) + b(3n+1) + b(3n+2),
b(3n+5) = 2*b(3n) + 2*b(3n+1) + b(3n+2),
give the polynomial x^3-3*x^2-3*x-1 with root 1 + 2^(1/3) + 2^(2/3). More generally, see link the roots of the equation of the third degree.
Equation: 4*x^3 - 6*x*y*z + 2*y^3 + z^3 = 3, if x = a(3n), y = a(3n+1), z = a(3n+2).
LINKS
Alexander Samokrutov, Table of n, a(n) for n = 0..83
Alexander Samokrutov, The roots of the equation of the third degree
Index entries for linear recurrences with constant coefficients, signature (0, 0, 3, 0, 0, 3, 0, 0, 1).
FORMULA
G.f.: x*(x^7-x^5+x^3-2*x^2-x-1) / (x^9+3*x^6+3*x^3-1). - Colin Barker, May 01 2015
MATHEMATICA
LinearRecurrence[{0, 0, 3, 0, 0, 3, 0, 0, 1}, {0, 1, 1, 2, 2, 3, 7, 9, 11}, 60] (* Vincenzo Librandi, May 15 2015 *)
CoefficientList[ Series[(x^8 - x^6 + x^4 - 2x^3 - x^2 - x)/(x^9 + 3x^6 + 3x^3 - 1), {x, 0, 44}], x] (* Robert G. Wilson v, Jul 24 2015 *)
PROG
(PARI) concat(0, Vec(x*(x^7-x^5+x^3-2*x^2-x-1)/(x^9+3*x^6+3*x^3-1) + O(x^100))) \\ Colin Barker, May 01 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alexander Samokrutov, May 01 2015
STATUS
approved