login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A237988
a(n) = 3*a(n-3) + 3*a(n-6) + a(n-9) for n>8, a(0)=0, a(1)=a(2)=1, a(3)=a(4)=2, a(5)=3, a(6)=7, a(7)=9, a(8)=11.
1
0, 1, 1, 2, 2, 3, 7, 9, 11, 27, 34, 43, 104, 131, 165, 400, 504, 635, 1539, 1939, 2443, 5921, 7460, 9399, 22780, 28701, 36161, 87642, 110422, 139123, 337187, 424829, 535251, 1297267, 1634454, 2059283, 4991004, 6288271, 7922725, 19202000, 24193004, 30481275, 73876279, 93078279, 117271283
OFFSET
0,4
COMMENTS
These three sequences:
b(3n+3) = b(3n) + b(3n+1) + b(3n+2),
b(3n+4) = 2*b(3n) + b(3n+1) + b(3n+2),
b(3n+5) = 2*b(3n) + 2*b(3n+1) + b(3n+2),
give the polynomial x^3-3*x^2-3*x-1 with root 1 + 2^(1/3) + 2^(2/3). More generally, see link the roots of the equation of the third degree.
Equation: 4*x^3 - 6*x*y*z + 2*y^3 + z^3 = 3, if x = a(3n), y = a(3n+1), z = a(3n+2).
LINKS
FORMULA
G.f.: x*(x^7-x^5+x^3-2*x^2-x-1) / (x^9+3*x^6+3*x^3-1). - Colin Barker, May 01 2015
MATHEMATICA
LinearRecurrence[{0, 0, 3, 0, 0, 3, 0, 0, 1}, {0, 1, 1, 2, 2, 3, 7, 9, 11}, 60] (* Vincenzo Librandi, May 15 2015 *)
CoefficientList[ Series[(x^8 - x^6 + x^4 - 2x^3 - x^2 - x)/(x^9 + 3x^6 + 3x^3 - 1), {x, 0, 44}], x] (* Robert G. Wilson v, Jul 24 2015 *)
PROG
(PARI) concat(0, Vec(x*(x^7-x^5+x^3-2*x^2-x-1)/(x^9+3*x^6+3*x^3-1) + O(x^100))) \\ Colin Barker, May 01 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved