OFFSET
1,1
COMMENTS
From David A. Corneth, Aug 02 2017: (Start)
23333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 is a term.
Terms start with 2 and end in 3. Proof (for base 10):
Let d[1] be the first digit of term p. Then 1 <= d[1] <= 9. Let r be the reverse of 4*p. If d[1] > 2 then r is too large to be nextprime(p + 1). if p = 1 then 4*p starts with 5 or 6 i.e. r ends in 5 or 6. No terms can match these conditions so d[1] = 2. If d[1] = 2 then p ends in 3 or 8. As primes don't end in 8, p ends in 3. (End)
EXAMPLE
p(9)=23, 4*23=92; 29=p(10).
MATHEMATICA
Select[Prime@ Range[10^6], NextPrime@ # == IntegerReverse[4 #] &] (* Michael De Vlieger, Aug 02 2017 *)
PROG
(PARI) is(n) = isprime(n) && fromdigits(Vecrev(digits(4*n))) == nextprime(n+1) \\ David A. Corneth, Aug 02 2017
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
David James Sycamore, Jul 31 2017
STATUS
approved