login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290425
Primes p such that the reverse of 4*p is the nextprime(p+1).
0
23, 233, 2333, 23333
OFFSET
1,1
COMMENTS
From David A. Corneth, Aug 02 2017: (Start)
23333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 is a term.
Terms start with 2 and end in 3. Proof (for base 10):
Let d[1] be the first digit of term p. Then 1 <= d[1] <= 9. Let r be the reverse of 4*p. If d[1] > 2 then r is too large to be nextprime(p + 1). if p = 1 then 4*p starts with 5 or 6 i.e. r ends in 5 or 6. No terms can match these conditions so d[1] = 2. If d[1] = 2 then p ends in 3 or 8. As primes don't end in 8, p ends in 3. (End)
EXAMPLE
p(9)=23, 4*23=92; 29=p(10).
MATHEMATICA
Select[Prime@ Range[10^6], NextPrime@ # == IntegerReverse[4 #] &] (* Michael De Vlieger, Aug 02 2017 *)
PROG
(PARI) is(n) = isprime(n) && fromdigits(Vecrev(digits(4*n))) == nextprime(n+1) \\ David A. Corneth, Aug 02 2017
CROSSREFS
Sequence in context: A140572 A140844 A168438 * A034986 A243449 A362431
KEYWORD
nonn,base,more
AUTHOR
STATUS
approved