login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290405
Expansion of (a(q) / b(q))^3 in powers of q where a(), b() are cubic AGM theta functions.
1
1, 27, 324, 2430, 13716, 64557, 265356, 983556, 3353076, 10670373, 32031288, 91455804, 249948828, 657261999, 1669898592, 4113612864, 9853898292, 23010586596, 52494114852, 117209543940, 256559365656, 551320914321, 1164556135440, 2420715030912, 4956677613180
OFFSET
0,2
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
J. M. Borwein, P. B. Borwein and F. Garvan, Some Cubic Modular Identities of Ramanujan, Trans. Amer. Math. Soc. 343 (1994), 35-47.
FORMULA
a(n) = 27 * A121590(n) for n > 0.
G.f.: (1 + 9*(eta(q^9)/eta(q))^3)^3 = 1 + 27*(eta(q^3)/eta(q))^12 = 1 + (c(q) / b(q))^3.
MATHEMATICA
nmax = 20; CoefficientList[Series[1 + 27*x*Product[(1 + x^k + x^(2*k))^12, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 30 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 30 2017
STATUS
approved