login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (a(q) / b(q))^3 in powers of q where a(), b() are cubic AGM theta functions.
1

%I #18 Jul 30 2017 10:21:54

%S 1,27,324,2430,13716,64557,265356,983556,3353076,10670373,32031288,

%T 91455804,249948828,657261999,1669898592,4113612864,9853898292,

%U 23010586596,52494114852,117209543940,256559365656,551320914321,1164556135440,2420715030912,4956677613180

%N Expansion of (a(q) / b(q))^3 in powers of q where a(), b() are cubic AGM theta functions.

%C Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

%H Seiichi Manyama, <a href="/A290405/b290405.txt">Table of n, a(n) for n = 0..10000</a>

%H J. M. Borwein, P. B. Borwein and F. Garvan, <a href="http://dx.doi.org/10.1090/S0002-9947-1994-1243610-6">Some Cubic Modular Identities of Ramanujan</a>, Trans. Amer. Math. Soc. 343 (1994), 35-47.

%F a(n) = 27 * A121590(n) for n > 0.

%F G.f.: (1 + 9*(eta(q^9)/eta(q))^3)^3 = 1 + 27*(eta(q^3)/eta(q))^12 = 1 + (c(q) / b(q))^3.

%t nmax = 20; CoefficientList[Series[1 + 27*x*Product[(1 + x^k + x^(2*k))^12, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jul 30 2017 *)

%Y Cf. A000726, A005882, A005928, A121590, A215690.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Jul 30 2017