login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290384
Number of ordered set partitions of [n] such that the smallest element of each block is odd.
2
1, 1, 1, 3, 5, 23, 57, 355, 1165, 9135, 37313, 352667, 1723605, 19063207, 108468169, 1374019539, 8920711325, 127336119839, 928899673425, 14751357906571, 119445766884325, 2088674728868631, 18588486479073881, 354892573941671363, 3443175067395538605
OFFSET
0,4
COMMENTS
All terms are odd.
LINKS
FORMULA
For n>=1, a(n) = Sum_{m=0..n} Sum_{k=1..m+1} (-1)^(m+k+1) * S(m,k-1) * (k-1)! * S(n-m,k) * k! = Sum_{m=0..n} Sum_{k=1..m+1} (-1)^(m+k+1) * A019538(m,k-1) * A019538(n-m,k). - Max Alekseyev, Sep 28 2021
G.f.: 1 + Sum_{k >= 1} (-1)^(k-1) / binomial(-1/x-1,k-1) / binomial(1/x-1,k). - Max Alekseyev, Sep 23 2021
EXAMPLE
a(3) = 3: 123, 12|3, 3|12.
a(4) = 5: 1234, 124|3, 3|124, 12|34, 34|12.
MAPLE
b:= proc(n, m, t) option remember; `if`(n=0, m!,
add(b(n-1, max(m, j), 1-t), j=1..m+1-t))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..30);
MATHEMATICA
b[n_, m_, t_]:=b[n, m, t]=If[n==0, m!, Sum[b[n - 1, Max[m, j], 1 - t], {j, m + 1 - t}]]; Table[b[n, 0, 0], {n, 0, 50}] (* Indranil Ghosh, Jul 30 2017 *)
PROG
(PARI) { A290384(n) = (n==0) + sum(m=0, n, sum(k=1, m+1, stirling(m, k-1, 2)*(k-1)! * stirling(n-m, k, 2)*k! * (-1)^(m+k+1))); } \\ Max Alekseyev, Sep 28 2021
(PARI) { A290384(n) = polcoef(1 + sum(k=1, n, (-1)^(k-1) / binomial(-1/x-1, k-1) / binomial(1/x-1, k) + O(x^(n+1)) ), n); } \\ Max Alekseyev, Sep 23 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 28 2017
STATUS
approved