login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290385
Base-ten pandigital factorization integers. The normal factorization (primes raised to greater-than-one exponents) of these numbers uses each digit exactly once.
1
15618090, 20824120, 22022490, 22816290, 22908090, 23294190, 23427135, 23507490, 24843120, 26104560, 26152080, 26679990, 27114690, 27687090, 28275690, 29218704, 29363320, 29447898, 29544690, 29582490, 29670378, 29688144, 29910138, 30120144
OFFSET
1,1
COMMENTS
The sequence contains 14856143 terms, the largest being 7^986543210.
The corresponding zeroless sequence contains 2295201 terms, from 2992890 = 2*3*5*67*1489 to 7^98654321. - Giovanni Resta, Jul 29 2017
EXAMPLE
20824120 is in the sequence because 2^3*5*487*1069 is pandigital.
MATHEMATICA
pop[d_, mn_] := Union @@ Table[ Select[ FromDigits /@ Flatten[ Permutations /@ Subsets[d, {k}], 1], # > mn && PrimeQ[#] &], {k, IntegerLength@ mn, Length[d]}]; ric[w_, d_, p_] := If[d == {}, cnt++; If[Max[Last /@ w] < 30 && Times @@ (Power @@@ w) <= 4*10^7, AppendTo[L, w]], Block[{pp = pop[d, p], v}, Do[v = Complement[d, IntegerDigits@ x]; ric[Append[w, {x, 1}], v, x]; Do[If[e > 1, ric[Append[w, {x, e}], Complement[v, IntegerDigits@e], x]], {e, Union[ FromDigits /@ Flatten[ Permutations /@ Subsets[v, {1, Length@v}], 1]]}], {x, pp}]]]; Monitor[cnt = 0; L = {}; ric[{}, Range[0, 9], 1]; , cnt]; Print["cnt = ", cnt]; Sort[(Times @@ (Power @@@ #)) & /@ L] (* Giovanni Resta, Jul 29 2017 *)
CROSSREFS
Sequence in context: A345618 A346335 A004673 * A058909 A179585 A105650
KEYWORD
nonn,base,fini
AUTHOR
Hans Havermann, Jul 28 2017
STATUS
approved