login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290265
The number of non-palindromic Motzkin paths of length n.
1
0, 0, 0, 2, 4, 16, 38, 114, 288, 800, 2092, 5702, 15244, 41568, 112884, 309822, 851344, 2354656, 6530336, 18193238, 50834716, 142530256, 400713502, 1129710694, 3192584432, 9043259136, 25669403892, 73007358218, 208022076292, 593741582912, 1697381979094, 4859758184274, 13933559180928
OFFSET
0,4
COMMENTS
The Motzkin paths (A001006) are classified here as either palindromic or non-palindromic. The latter are counted by the sequence 1, 1, 2, 2, 3, 3, 5, 5..., offset 0, i.e., entries of A005773 repeated.
Non-palindromic means, there is at least one step of the n (say, the s-th) which does not match the (n-s+1)st step. Not matching means, if the s-th step is U, the (n-s+1)st step is not D, or if the s-th step is F (sometimes also denoted H), the (n-s+1)st step is not F.
All terms are even (because a non-palindromic path reversed creates a different non-palindromic path).
FORMULA
a(n) = A001006(n)-A005773(1+floor(n/2)).
Conjecture: -(16*n-47)*(n+2)*(n+1)*a(n) -(n+1)*(9*n^2-167*n+188)*a(n-1) +n*(139*n^2-450*n+59)*a(n-2) +(n-1)*(187*n^2-1619*n+2250)*a(n-3) -(n-2)*(97*n^2+346*n-2255)*a(n-4) +(-311*n^3+2398*n^2-5779*n+4112)*a(n-5) +3*(-153*n^3+1458*n^2-4361*n+4348)*a(n-6) -3*(n-6)*(169*n^2-1152*n+1799)*a(n-7) -9*(n-6)*(n-7)*(23*n-82)*a(n-8)=0.
MAPLE
A290265 := proc(n)
A001006(n)-A005773(1+floor(n/2)) ;
end proc:
seq( A290265(n), n=0..60) ;
MATHEMATICA
a001006[n_]:=Hypergeometric2F1[(1-n)/2, -n/2, 2, 4]; a005773[n_]:=If[n==0, 1, Sum[k*Sum[Binomial[n, j]*Binomial[j, 2*j-n-k], {j, 0, n}]/n, {k, 1, n}]]; Table[a001006[n] - a005773[1 + Floor[n/2]], {n, 0, 50}] (* Indranil Ghosh, Aug 04 2017 *)
CROSSREFS
Sequence in context: A110998 A051861 A296297 * A223093 A333022 A048222
KEYWORD
nonn
AUTHOR
R. J. Mathar, Jul 25 2017
STATUS
approved