OFFSET
1,1
REFERENCES
Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, Experimental Math, 28 (2019), 428-439.
LINKS
Lars Blomberg, Table of n, a(n) for n = 1..47
Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, preprint arXiv:1707.03894 [math.NT], July 14 2017.
EXAMPLE
For example, for n = 4, we have n^2 in Fibonacci representation is 100100, which consists of two consecutive blocks of 100.
PROG
(PARI) Z(n)=my(k=0, v, m); while(fibonacci(k)<=n, k=k+1); m=k-1; v=vector(m-1); v[1]=1; n=n-fibonacci(k-1); while(n>0, k=0; while(fibonacci(k)<=n, k=k+1); v[m-k+2]=1; n=n-fibonacci(k-1)); v; \\ after A014417
isok(n) = {my(vz = Z(n^2)); if (!(#vz % 2), vector(#vz/2, k, vz[k]) == vector(#vz/2, k, vz[k+#vz/2]); ); } \\ Michel Marcus, Aug 02 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Jeffrey Shallit, Jul 25 2017
EXTENSIONS
a(23)-a(31) from Lars Blomberg, Aug 02 2017
STATUS
approved