login
A290195
Decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 705", based on the 5-celled von Neumann neighborhood.
5
1, 1, 5, 11, 7, 47, 31, 191, 127, 767, 511, 3071, 2047, 12287, 8191, 49151, 32767, 196607, 131071, 786431, 524287, 3145727, 2097151, 12582911, 8388607, 50331647, 33554431, 201326591, 134217727, 805306367, 536870911, 3221225471, 2147483647, 12884901887
OFFSET
0,3
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjecture: For odd n > 3, a(n) = 2^(n-1) - 1, for even n > 3, a(n) = 3*2^(n-1) - 1. - David A. Corneth, Jul 23 2017
From Chai Wah Wu, Nov 01 2018: (Start)
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) for n > 5 (conjectured).
G.f.: (16*x^5 - 20*x^4 + 6*x^3 + 1)/((x - 1)*(2*x - 1)*(2*x + 1)) (conjectured). (End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 705; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jul 23 2017
STATUS
approved