login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290193
Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 705", based on the 5-celled von Neumann neighborhood.
4
1, 1, 101, 1011, 111, 101111, 11111, 10111111, 1111111, 1011111111, 111111111, 101111111111, 11111111111, 10111111111111, 1111111111111, 1011111111111111, 111111111111111, 101111111111111111, 11111111111111111, 10111111111111111111, 1111111111111111111
OFFSET
0,3
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjecture: For even n > 3, binary representation of 3 * 2^(n - 1) - 1. For odd n > 3, binary representation of 2^(n - 1) - 1. - David A. Corneth, Jul 23 2017
From Chai Wah Wu, Nov 01 2018: (Start)
a(n) = a(n-1) + 100*a(n-2) - 100*a(n-3) for n > 5 (conjectured).
G.f.: (10000*x^5 - 10900*x^4 + 910*x^3 + 1)/((x - 1)*(10*x - 1)*(10*x + 1)) (conjectured). (End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 705; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jul 23 2017
STATUS
approved