The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290126 Least k such that the sum of the n greatest divisors of k is a prime number. 2
 2, 2, 4, 28, 16, 140, 24, 90, 120, 108, 60, 144, 300, 288, 120, 672, 252, 432, 240, 630, 960, 756, 480, 1200, 1080, 1728, 1680, 1008, 720, 2016, 840, 3150, 2160, 2700, 1980, 4800, 2520, 3780, 3240, 8736, 3960, 3600, 6720, 6930, 10800, 6300, 4200, 16848, 9240, 5040 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The corresponding primes are 2, 3, 7, 53, 31, 307, 59, 223, 331, 277, 167, 397, 853, 809, 359, 1973, 727, 1237, ... The squares of the sequence are 4, 16, 144, 3600, ... LINKS Chai Wah Wu, Table of n, a(n) for n = 1..1000 EXAMPLE a(4)=28 because the sum of the last 4 divisors of 28: 28+14+7+4 = 53 is a prime number. MAPLE M:= 20000: # to get all terms before the first term > M R:= 'R': for k from 2 to M do F:= ListTools:-PartialSums(sort(convert( numtheory:-divisors(k), list), `>`)); for n in select(t -> isprime(F[t]), [\$1..nops(F)]) do if not assigned(R[n]) then R[n]:= k fi od od: inds:= map(op, {indices(R)}): N:= min({\$1..max(inds)+1} minus inds): seq(R[i], i=1..N-1); # Robert Israel, Jul 24 2017 MATHEMATICA Table[k=1; While[Nand[Length@#>=n, PrimeQ[Total@Take[PadLeft[#, n], n]]]&@Divisors@k, k++]; k, {n, 1, 20}](* Program from Michael De Vlieger adapted for this sequence. See A289776 *) PROG (PARI) a(n) = {my(i = 2, d); while(1, d = divisors(i); if(#d >= n, if(isprime(sum(j=#d-n+1, #d, d[j])), return(i), i++), i++)); i} \\ David A. Corneth, Jul 20 2017 (Python) from sympy import divisors, isprime def A290126(n): i = 1 while len(divisors(i)) < n or not isprime(sum(divisors(i)[-n:])): i += 1 return i # Chai Wah Wu, Aug 05 2017 CROSSREFS Cf. A000290, A027750, A240698, A289776. Sequence in context: A189870 A257614 A067068 * A266046 A032334 A032082 Adjacent sequences: A290123 A290124 A290125 * A290127 A290128 A290129 KEYWORD nonn AUTHOR Michel Lagneau, Jul 20 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 25 22:04 EDT 2023. Contains 361529 sequences. (Running on oeis4.)