|
|
A067068
|
|
a(n) = n* - 2^n, where n* (A003418) = least common multiple of the numbers [1,...,n].
|
|
2
|
|
|
-1, -2, -2, -4, 28, -4, 292, 584, 2008, 1496, 25672, 23624, 352168, 343976, 327592, 655184, 12121168, 11990096, 232268272, 231743984, 230695408, 228598256, 5345840272, 5337451664, 26737589968, 26704035536, 80179215472, 80044997744
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
It is known that this sequence is nonnegative for n >= 7. This can be established using the methods used to show A059794 is nonnegative. - Carl Pomerance, Bell Labs, Feb 16 2002
|
|
REFERENCES
|
Tenenbaum, G. (2015). Introduction to analytic and probabilistic number theory, 3rd ed., American Mathematical Soc. See Theorem 1.5.
|
|
LINKS
|
Harvey P. Dale, Table of n, a(n) for n = 1..1000
|
|
MATHEMATICA
|
Table[LCM@@Range[n]-2^n, {n, 30}] (* Harvey P. Dale, Sep 24 2022 *)
|
|
CROSSREFS
|
Cf. A003418, A059794.
Sequence in context: A189879 A189870 A257614 * A290126 A266046 A032334
Adjacent sequences: A067065 A067066 A067067 * A067069 A067070 A067071
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
N. J. A. Sloane, Feb 17 2002
|
|
STATUS
|
approved
|
|
|
|