login
A059794
a(n) = n* - 2^(n-1), where n* (A003418) = least common multiple of the numbers [1,...,n].
4
0, 0, 2, 4, 44, 28, 356, 712, 2264, 2008, 26696, 25672, 356264, 352168, 343976, 687952, 12186704, 12121168, 232530416, 232268272, 231743984, 230695408, 5350034576, 5345840272, 26754367184, 26737589968, 80246324336, 80179215472
OFFSET
1,3
COMMENTS
It is known that this sequence is always nonnegative - see references.
LCM(1,2,3...n) = n* LCM( binomial(n-1,0), binomial(n-1,1),..., binomial(n-1,n-1)) - see American Mathematical Monthly E2686. - Paul Mills, Feb 14 2002
REFERENCES
G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, pp. 12-13, Publications de l'Institut Cartan, 1990.
LINKS
Peter L. Montgomery, LCM of Binomial Coefficients, Problem E2686, American Mathematical Monthly, Vol. 86 (1979), p. 131.
M. Nair, On Chebyshev-type inequalities for primes, Amer. Math. Monthly 89 (1982) 126-129.
M. Nair, A new method in elementary prime number theory, J. London Math. Soc. 25 (1982) 385-391.
EXAMPLE
Let n=4. Then n*=12 and 2^(4-1)=8. Then we calculate 12-8=4 to be the second term of the sequence.
MAPLE
A059794 := n->lcm(seq(i, i=1..n))-2^(n-1);
MATHEMATICA
a[n_] := LCM @@ Range[n] - 2^(n-1); Table[a[n], {n, 1, 28}] (* Jean-François Alcover, Jul 05 2012 *)
PROG
(PARI) a(n) = lcm(vector(n, i, i)) - 2^(n-1); \\ Michel Marcus, Jan 26 2015
CROSSREFS
KEYWORD
nice,nonn,easy
AUTHOR
Kathleen Cussen (ehlana52(AT)hotmail.com), Feb 22 2001
EXTENSIONS
Corrected and extended by Vladeta Jovovic, Feb 24 2001
References from Jean-Paul Allouche, Feb 17 2002
STATUS
approved