login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289916
Coefficients of 1/(Sum_{k>=0} round((k+1)*r)(-x)^k), where r = 9/7.
2
1, 3, 5, 8, 13, 22, 39, 69, 120, 206, 353, 607, 1046, 1803, 3106, 5348, 9208, 15856, 27306, 47025, 80982, 139457, 240155, 413566, 712196, 1226463, 2112073, 3637166, 6263503, 10786276, 18574872, 31987488, 55085136, 94861220, 163358969, 281317834, 484452887
OFFSET
0,2
COMMENTS
Conjecture: the sequence is strictly increasing.
FORMULA
G.f.: 1/(Sum_{k>=0} round((k+1)*r)(-x)^k), where r = 9/7.
From Colin Barker, Jul 19 2017: (Start)
G.f.: (1+x)^2*(1-x+x^2-x^3+x^4-x^5+x^6) / ((1-x+x^2)*(1-x-x^2-x^3+x^4)).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) + 2*a(n-5) - a(n-6) for n>5.
(End)
MATHEMATICA
z = 2000; r = 9/7;
u = CoefficientList[Series[1/Sum[Round[(k + 1)*r] (-x)^k, {k, 0, z}], {x, 0, z}],
x]; (* A289916 *)
v = N[u[[z]]/u[[z - 1]], 200]
RealDigits[v, 10][[1]] (* A289917 *)
PROG
(PARI) Vec((1+x)^2*(1-x+x^2-x^3+x^4-x^5+x^6) / ((1-x+x^2)*(1-x-x^2-x^3+x^4)) + O(x^50)) \\ Colin Barker, Jul 20 2017
CROSSREFS
Cf. A078140 (includes guide to related sequences), A289917.
Sequence in context: A180459 A133605 A218607 * A014252 A296378 A177231
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 18 2017
STATUS
approved