login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289829
Perfect squares of the form prime(k+1)^2 - prime(k)^2 + 1 where prime(k) is the k-th prime number.
1
25, 49, 121, 169, 289, 361, 841, 961, 1681, 1849, 2401, 2809, 3721, 5929, 6889, 7921, 8281, 10201, 11449, 11881, 14161, 14641, 17689, 24649, 26569, 32041, 38809, 41209, 43681, 44521, 61009, 63001, 69169, 76729, 80089, 85849, 89401, 94249, 96721, 97969, 108241
OFFSET
1,1
EXAMPLE
7^2 - 5^2 + 1 = 5^2, 17^2 - 13^2 + 1 = 11^2, 47^2 - 43^2 + 1 = 19^2, etc.
MATHEMATICA
TakeWhile[#, # < 110000 &] &@ Union@ Select[Array[Prime[# + 1]^2 - Prime[#]^2 + 1 &, 10^4], IntegerQ@ Sqrt@ # &] (* Michael De Vlieger, Jul 13 2017 *)
PROG
(Python)
from __future__ import division
from sympy import divisors, isprime, prevprime, nextprime
A289829_list = []
for n in range(10**4):
m = n**2-1
for d in divisors(m):
if d*d >= m:
break
r = m//d
if not r % 2:
r = r//2
if not isprime(r):
p, q = prevprime(r), nextprime(r)
if m == (q-p)*(q+p):
A289829_list.append(n**2)
break # Chai Wah Wu, Jul 15 2017
(PARI) is(n) = if(!issquare(n), return(0), my(p=2); while(1, if(n==nextprime(p+1)^2-p^2+1, return(1)); p=nextprime(p+1); if(p > n, return(0)))) \\ Felix Fröhlich, Jul 15 2017
CROSSREFS
Sequence in context: A106564 A308177 A104777 * A358060 A131706 A110015
KEYWORD
nonn
AUTHOR
Joseph Wheat, Jul 12 2017
EXTENSIONS
More terms from Alois P. Heinz, Jul 13 2017
STATUS
approved