login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Perfect squares of the form prime(k+1)^2 - prime(k)^2 + 1 where prime(k) is the k-th prime number.
1

%I #28 Dec 16 2019 11:40:06

%S 25,49,121,169,289,361,841,961,1681,1849,2401,2809,3721,5929,6889,

%T 7921,8281,10201,11449,11881,14161,14641,17689,24649,26569,32041,

%U 38809,41209,43681,44521,61009,63001,69169,76729,80089,85849,89401,94249,96721,97969,108241

%N Perfect squares of the form prime(k+1)^2 - prime(k)^2 + 1 where prime(k) is the k-th prime number.

%H Chai Wah Wu, <a href="/A289829/b289829.txt">Table of n, a(n) for n = 1..10000</a>

%e 7^2 - 5^2 + 1 = 5^2, 17^2 - 13^2 + 1 = 11^2, 47^2 - 43^2 + 1 = 19^2, etc.

%t TakeWhile[#, # < 110000 &] &@ Union@ Select[Array[Prime[# + 1]^2 - Prime[#]^2 + 1 &, 10^4], IntegerQ@ Sqrt@ # &] (* _Michael De Vlieger_, Jul 13 2017 *)

%o (Python)

%o from __future__ import division

%o from sympy import divisors, isprime, prevprime, nextprime

%o A289829_list = []

%o for n in range(10**4):

%o m = n**2-1

%o for d in divisors(m):

%o if d*d >= m:

%o break

%o r = m//d

%o if not r % 2:

%o r = r//2

%o if not isprime(r):

%o p, q = prevprime(r), nextprime(r)

%o if m == (q-p)*(q+p):

%o A289829_list.append(n**2)

%o break # _Chai Wah Wu_, Jul 15 2017

%o (PARI) is(n) = if(!issquare(n), return(0), my(p=2); while(1, if(n==nextprime(p+1)^2-p^2+1, return(1)); p=nextprime(p+1); if(p > n, return(0)))) \\ _Felix Fröhlich_, Jul 15 2017

%K nonn

%O 1,1

%A _Joseph Wheat_, Jul 12 2017

%E More terms from _Alois P. Heinz_, Jul 13 2017