login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289191
Number of polygonal tiles with n sides with two exits per side and n edges connecting pairs of exits, with no edges between exits on the same side and non-isomorphic under rotational symmetry.
4
0, 2, 4, 22, 112, 1060, 11292, 149448, 2257288, 38720728, 740754220, 15648468804, 361711410384, 9081485302372, 246106843197984, 7160143986526240, 222595582448849152, 7364186944683168828, 258327454310582805036, 9577476294162996275928, 374205233351106756670120
OFFSET
1,2
COMMENTS
The case n=2 is a degenerate polygon (two sides connecting two vertices). The two possibilities are when the edges cross and do not cross. Polygons start at n=3 with a triangle.
The sequence A132102 enumerates the case that edges are allowed between exits on the same side. This sequence can be enumerated in a similar manner using inclusion-exclusion on the number of sides that have their two exits connected. - Andrew Howroyd, Jan 26 2020
PROG
(PARI) a(n) = {sumdiv(n, d, my(m=n/d); eulerphi(d)*sum(i=0, m, (-1)^i * binomial(m, i) * sum(j=0, m-i, (d%2==0 || m-i-j==0) * binomial(2*(m-i), 2*j) * d^j * (2*j)! / (j!*2^j) )))/n} \\ Andrew Howroyd, Jan 26 2020
CROSSREFS
See A053871 for tiles with no rotational symmetries being taken into account, A289269 for tiles with rotational and reflectional symmetries being taken into account, A289343 for the same statistic evaluated when n is prime.
Cf. A132102.
Sequence in context: A324145 A366732 A165588 * A235938 A279705 A321248
KEYWORD
nonn
AUTHOR
Marko Riedel, Jun 27 2017
EXTENSIONS
Terms a(14) and beyond from Andrew Howroyd, Jan 26 2020
STATUS
approved