OFFSET
1,1
COMMENTS
The all-guards move model of eternal domination was introduced by Goddard et al., where it was called the eternal m-security number.
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
S. Finbow, M. E. Messinger, and M. F. van Bommel, Eternal domination on 3×n grid graphs, Australasian Journal of Combinatorics, 61(2) (2015), 156-174. (next 11 terms)
S. Finbow and M. F. van Bommel, The eternal domination number for 3xn grid graphs, Australasian Journal of Combinatorics, 76(1) (2020), 1-23. (proof of a(26) = 23 and proof of formula)
W. Goddard, S. M. Hedetniemi, and S. T. Hedetniemi, Eternal security in graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 52 (2005), 169-180.
J. L. Goldwasser, W. F. Klostermeyer, and C. M. Mynhardt, Eternal protection in grid graphs, Utilitas Mathematica, 91 (2013), 47-64. (first 14 terms)
Wikipedia, Eternal dominating set
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
FORMULA
a(n) = a(n-5) + 4 for n > 26.
G.f.: x*(2 + x^2 + x^3 + x^4 - x^5 + x^6 - x^8 + x^13 - x^15 + x^25 - x^26) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, Sep 12 2017
PROG
(PARI) Vec(x*(2 + x^2 + x^3 + x^4 - x^5 + x^6 - x^8 + x^13 - x^15 + x^25 - x^26) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)) + O(x^100)) \\ Colin Barker, Sep 13 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Martin F. van Bommel, Sep 12 2017
STATUS
approved